首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fusion Engineering and Design》2014,89(9-10):2357-2362
In the process of assembly and maintenance of ITER vacuum vessel (ITER VV), various machining tasks including threading, milling, welding-defects cutting and flexible hose boring are required to be performed from inside of ITER VV by on-site machining tools. Robot machine is a promising option for these tasks, but great chatter (machine vibration) would happen in the machining process. The chatter vibration will deteriorate the robot accuracy and surface quality, and even cause some damages on the end-effector tools and the robot structure itself. This paper introduces two vibration control methods, one is passive and another is active vibration control. For the passive vibration control, a parallel mechanism is presented to increase the stiffness of robot machine; for the active vibration control, a hybrid control method combining feedforward controller and nonlinear feedback controller is introduced for chatter suppression. A dynamic model and its chatter vibration phenomena of a hybrid robot is demonstrated. Simulation results are given based on the proposed hybrid robot machine which is developed for the ITER VV assembly and maintenance.  相似文献   

2.
In the field of the ITER port plug engineering and integration task, CEA has contributed to define proposals concerning the port plugs vacuum sealing interface with the vessel flange and the equatorial plug handling.The 2001 baseline vacuum flange sealing consisted of TIG welding of a 316L strip plate on to U shapes. This arrangement presented some issues like welding access, implementation of tools, lip consumption, complex local leak test, continuous leak checking. Therefore, an alternate sealing solution based on the use of metallic gaskets is proposed. The different technical aspects are discussed to explain how this design can simplify the maintenance and deal with safety and vacuum requirements.The design of the mechanical attachment and vacuum sealing of the plug has constantly evolved, but the associated remote handling equipment was not systematically reviewed. An update of the cask and maintenance procedure was studied in order to design it in accordance with the last generic plug flange design. This includes a concept of a gripping system that uses the plug flange bolting area and, to help the remote handling process, a cantilever assisting system is suggested to increase the reliability of the transfer operation between vacuum vessel and cask.  相似文献   

3.
The 3D steady-state Computational Fluid Dynamics (CFD) analysis of the ITER vacuum vessel (VV) regular sector #5 is presented, starting from the CATIA models and using a suite of tools from the commercial software ANSYS FLUENT®. The peculiarity of the problem is linked to the wide range of spatial scales involved in the analysis, from the millimeter-size gaps between in-wall shielding (IWS) plates to the more than 10 m height of the VV itself. After performing several simplifications in the geometrical details, a computational mesh with ~50 million cells is generated and used to compute the steady-state pressure and flow fields from a Reynolds-Averaged Navier–Stokes model with SST k-ω turbulence closure. The coolant mass flow rate turns out to be distributed 10% through the inboard and the remaining 90% through the outboard. The toroidal and poloidal ribs present in the VV structure constitute significant barriers for the flow, giving rise to large recirculation regions. The pressure drop is mainly localized in the inlet and outlet piping.  相似文献   

4.
The 3D Computational Fluid Dynamic (CFD) steady state analysis of the regular sector #5 of the ITER vacuum vessel (VV) is presented in these two companion papers using the commercial software ANSYS-FLUENT®. The pure hydraulic analysis, concentrating on flow field and pressure drop, is presented in Part I. This Part II focuses on the thermal-hydraulic analysis of the effects of the nuclear heat load. Being the VV classified as safety important component, an accurate thermal-hydraulic analysis is mandatory to assess the capability of the water coolant to adequately remove the nuclear heat load on the VV. Based on the recent re-evaluation of the nuclear heat load, the steady state conjugate heat transfer problem is solved in both the solid and fluid domains. Hot spots turn out to be located on the surface of the inter-modular keys and blanket support housings, with the computed peak temperature in the sector reaching ~290 °C. The computed temperature of the wetted surfaces is well below the coolant saturation temperature and the temperature increase of the water coolant at the outlet of the sector is of only a few °C. In the high nuclear heat load regions the computed heat transfer coefficient typically stays above the 500 W/m2 K target.  相似文献   

5.
Development of Prototype Neutron Flux Monitor for ITER   总被引:1,自引:0,他引:1  
The prototype neutron flux monitor consists of a high purity 235U fission chamber detector and a “blank” detector, which is a fissile material free detector with the same dimension as the fission chamber detector to identify noise issues such as noise coming from gamma rays. The main parameters of the fission chamber assembly that have been measured in the laboratory are confirmed to approach the technological level of the International Thermonuclear Experimental Reactor (ITER) in the near future. This prototype neutron flux monitor will be further developed to become a neutron flux monitor suitable for the operation phase of D-D fusion on the ITER.  相似文献   

6.
Electromagnetic phenomena due to plasma current disruptions are the cause for the main mechanical operation loads over the ITER equatorial level port plug structures.This paper presents a detailed finite element simulation and analysis of the transient electromagnetic effects of three different plasma current disruption cases over three designs of diagnostic shielding module (DSM) structure. The DSMs are contained into and supported by the generic equatorial port plug (GEPP) analyzed structure.The three plasma disruption cases studied were: major disruption upwards linear decay in 36 ms (MD UP LIN36), vertical displacements events, upwards and downwards linear decay in 36 ms (VDE UP LIN36 and VDE DW LIN36). A detailed analysis for GEPP structure and three DSM-first wall (FW) designs (horizontal and vertical drawers and monoblock) is also presented in order to extract the Eddy current distribution on these devices and thus the resultant electromagnetic forces and moments acting on them.  相似文献   

7.
The port-based ITER diagnostic systems are housed primarily in two locations, the equatorial and upper port plugs. The port plug structure provides confinement function, maintains ultra-high vacuum quality and the first confinement barrier for radioactive materials at the ports. The port plug structure design, from the ITER International Organisation (IO), is cooled and heated by pressurized water which flows through a series of gun-drilled water channels and water pipes. The cooling function is required to remove nuclear heating due to radiation during operation of ITER, while the heating function is intended to heat up uniformly the machine during baking condition. The work presented provides coupled thermo-hydraulic analysis and optimization of a Generic Equatorial Port Plug (GEPP) structure cooling and heating system. The optimization performed includes positioning, minimization of number and size of gun drilled channels, complying with the flow and functional requirements during operating and baking conditions.  相似文献   

8.
The Fusion Simulation Project (FSP) is envisioned as a 15 year, $20M/year multi-institutional project to develop a comprehensive simulation capability for magnetic fusion experiments with a focus on the International Thermonuclear Experimental Reactor (ITER). The FSP would be able to contribute to design decisions, experimental planning and performance optimization for ITER, substantially increasing ITERs likelihood of success and its value to the US Fusion Program. The FSP would be jointly supported by the DOE Office of Fusion Energy Sciences and the DOE Office of Advanced Scientific Computing Research. The potential for developing this simulation capability rests on the exponential growth of computer power over the last 50 years, the progress in physics understanding developed by the international fusion program and the continued progress in computational mathematics that enables the use of the new ultra-scale computers to solve difficult mathematical problems. The initial concept for the FSP was developed by the Fusion Energy Sciences Advisory Committee Integrated Simulation and Optimization of Fusion Systems Subcommittee (J. Dahlburg and J. Corones, et al., J. Fusion Energy, 20(4), 135–196.). The DOE asked the FSP Steering Committee to develop a project vision, a governance concept and a roadmap for the FSP. The Committee recommends that the FSP consist of three elements: a production component, a research and integration component, and a software infrastructure component. The key challenge is developing components that bridge the enormous distance and time scales involved with the disparate physics elements of tokamak performance. The committee recommended that this challenge be met through Focused Integration Initiatives that would first seek to integrate different physics packages with disparate distance and time scales. An example is the integration of Radio Frequency (RF) Current Drive and Magnetohydrodynamics (MHD) components to produce an integrated capability to simulate the use of RF current drive to suppress MHD instabilities. This report also defines the requirements for a governance structure. The FSP Steering Committee judged that the project begin with a conceptual design phase lasting one or two years and be followed by a staged ramp-up over a few years to the full funding level.  相似文献   

9.
Recent progress of the ITER vacuum vessel (VV) design is presented. As construction approaches, the VV design has been improved, simplified and developed in more detail. The VV support system has been improved, and the design of the VV shells and the blanket supports has been simplified. The VV design simplifications have been driven by manufacturing requirements and recommendations resulting from cooperation with industry. To simplify the manufacture/maintenance of the port structures, a single wall concept is used for some ports. Structural analyses have been performed to validate all design modifications.  相似文献   

10.
The construction of the steady-state-capable superconducting KSTAR tokamak is in close proximity to the finalization. As one of the main components of the KSTAR device, the vacuum vessel is designed and manufactured during the construction period. The KSTAR vacuum vessel is composed of two large sectors forming the 337.5° of a full torus, and the remaining 22.5° section consisting of 24 small pieces. The large two sectors were welded at the site, and the 22.5° space was used for toroidal field coil assembly. The remaining 22.5° section of the vacuum vessel was assembled after 16 toroidal field coils assembly. The total 72 penetration ports were used to connect the vacuum vessel body and the cryostat. The major fabrication activity started in January 2003 after the finalization of fabrication design. The final components and structures were warehoused in June 2004 and site assembly is finished in 2007. Details of analysis, shop fabrication, and inspection results of the vacuum vessel including ports are summarized in the present work.  相似文献   

11.
在中国向ITER(International Thermonuclear Experiment Reactor)实验包层工作组提交的双功能锂铅实验包层模块(DFLL-TBM)设计分析的基础上,通过对DFLL-TBM系统相关的瞬态事故如真空室内部冷却剂泄漏、TBM(实验包层模块)内部冷却剂泄漏以及真空室外部冷却剂泄漏事故进行计算分析,评价DFLL-TBM对ITER在热工方面对安全的影响.结果表明:当发生瞬态事故时,DFLL-TBM有能力通过热辐射将余热排出,且包层结构不会熔化.DFLL-TBM可满足ITER在热工方面对安全的要求.  相似文献   

12.
A structural analysis of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel's lower port region was presented by means of a finite element analysis method. The purpose is to evaluate the stress and displacement level on this structure under various combinations of five designed loads, including the gravity of the vacuum vessel, seismic loads, electromagnetic loads, and possible pressure loads to ensure structural safety. The cyclic symmetry finite element model of this structure was developed by using ANSYS code. The re- sults showed that the maximum stress does not exceed the allowable value for any of the load combinations according to ASME code and the nine vacuum vessel (VV) supports have the ability to sustain the entire VV and in vessel-components and withstand load combinations under both normal as well as off-normal operation conditions. Stress mainly concentrates on the connecting region of the VV support and lower port stub extension.  相似文献   

13.
During plasma disruptions, time-varying eddy currents are induced in the vacuum vessel (VV) and Plasma Facing Components (PFCs) of EAST. Additionally, halo currents flow partly through these structures during the vertical displacement events (VDEs). Under the high magnetic field circumstances, the resulting electromagnetic forces (EMFs) and torques are large. In this paper, eddy currents and EMFs on EAST VV, PFCs and their supports are calculated by analytical and numerical methods. ANSYS software is employed to evaluate eddy currents on VV, PFCs and their structural responses. To learn the electromagnetic and structural response of the whole structure more accurately, a detailed finite element model is established. The two most dangerous scenarios, major disruptions and downward VDEs, are examined. It is found that distribution patterns of eddy currents for various PFCs differ greatly, therefore resulting in different EMFs and torques. It can be seen that for certain PFCs the transient reaction force are severe. Results obtained here may set up a preliminary foundation for the future dynamic response research of EAST VV and PFCs which will provide a theoretical basis for the future engineering design of tokamak devices.  相似文献   

14.
A specific software design is elaborated in this paper for the hybrid robot machine used for the ITER vacuum vessel (VV) assembly and maintenance. In order to provide the multi-machining-function as well as the complicated, flexible and customizable GUI designing satisfying the non-standardized VV assembly process in one hand, and in another hand guarantee the stringent machining precision in the real-time motion control of robot machine, a client–server-control software architecture is proposed, which separates the user interaction, data communication and robot control implementation into different software layers. Correspondingly, three particular application protocols upon the TCP/IP are designed to transmit the data, command and status between the client and the server so as to deal with the abundant data streaming in the software. In order not to be affected by the graphic user interface (GUI) modification process in the future experiment in VV assembly working field, the real-time control system is realized as a stand-alone module in the architecture to guarantee the controlling performance of the robot machine. After completing the software development, a milling operation is tested on the robot machine, and the result demonstrates that both the specific GUI operability and the real-time motion control performance could be guaranteed adequately in the software design.  相似文献   

15.
《Fusion Engineering and Design》2014,89(9-10):1969-1974
The test blanket module port plug (TBM PP) consists of a TBM frame and two TBM-sets. However, at any time of the ITER operation, a TBM set can be replaced by a dummy TBM. The frame provides a standardized interface with the vacuum vessel (VV)/port structure and provides thermal isolation from the shield blanket. As one of the plasma-facing components, it shall withstand heat loads while at the same time provide adequate neutron shielding for the VV and magnet coils. The frame design shall provide a stable engineering solution to hold TBM-sets and also provide a mean for rapid remote handling replacement and refurbishment. This paper presents main design features of the conceptual design of TBM PP with two dummy TBMs. Also analysis results are summarized to evaluate shielding, hydraulic, and thermal and structural performances of the TBM PP design.  相似文献   

16.
ITER氚增殖实验包层设计研究进展   总被引:2,自引:2,他引:0  
国际热核实验反应堆(ITER)为人类开发聚变能提供重要的物理和工程技术实验平台,ITER氚增殖实验包层模块(TBM)技术是必须掌握的关键技术.参与ITER计划的成员国根据本国商用演示堆包层发展策略,分别提出了各自的实验包层概念,以便在ITER运行期间进行实验.本文对ITER-TBM目前已经开展和正在进行的主要设计研究工作进展进行总结,介绍了各方提出的设计方案、支撑设计的相关技术研究进展,以及合作实验窗口的分配现状.  相似文献   

17.
ITER磁体过渡馈线的结构设计与优化   总被引:1,自引:0,他引:1  
国际热核聚变实验堆ITER(Intemational Thermonuclear Experimental Reactor)是正在进行的一项大型国际合作项目.磁体过渡馈线是保证磁体正常工作的重要通道.本文对磁体过渡馈线系统各组件结构进行了设计,利用有限元软件对结构作了初步分析和结构优化.结果表明:现有结构完全满足设计要求;通过对现有结构进行优化,如增设横向筋板、L型加强板,简化超导电流传输线(Busbar)的弯曲结构等,可以达到降低成本、简化结构的目的.  相似文献   

18.
The design of the ITER Electron Cyclotron Heating and Current Drive (ECH&CD) Upper launcher is recently in the first of two final design phases. The first phase deals with the finalization of all FCS (First Confinement System) components as well as with specific design progress for the remaining In-vessel components.The most outstanding structural In-vessel component of an ECH&CD Upper launcher is the Blanket Shield Module (BSM) with the First Wall Panel (FWP). Both of them form the plasma facing part of the launcher, which has to meet strong demands on dissipation of nuclear heat loads and mechanical rigidity. Nuclear heat loads from 3 MW/m3 at the First Wall Panel’ surface, decaying down to a tenth in a distance of 0.5 m behind of it will affect the BSM and the FWP. Additional heating of maximum 0.5 MW/m2 due to plasma radiation must be dissipated from the FWP.To guarantee save and homogenous removal of such extensive heat loads, the BSM is designed as a welded steel-case with specific cooling channels inside its wall structure. Attached to its face side is the FWP with a high-power cooling structure.Based on computational analysis the optimum cooling channel geometry has been investigated. Specific pre-prototype tests have been made and associated assembly parameters have been determined in order to identify optimum manufacturing processes and joining techniques, which guarantee a robust design with maximum geometrical accuracy.This paper describes the design, manufacturing and testing of a full-size mock-up of the BSM. The study was carried out in an industrial cooperation with MAN Diesel and Turbo SE.  相似文献   

19.
The ITER neutron shielding blocks are located between the inner shell and the outer shell of the vacuum vessel (VV) with the main function of providing neutron shielding. Considering the combined loads of the shielding blocks during the plasma operation of the ITER, limit analysis for one typical ferromagnetic (FM) shielding block has been performed and the structural design has been evaluated based on the American Society of Mechanical Engineers (ASME) criterion and European standards. Results show that the collapse load of this shielding block is three times the specified load, which is much higher than the design requirement of 1.25. The structure of this neutron shielding block has a sufficient safety margin.  相似文献   

20.
ITER上窗口屏蔽中子学分析研究   总被引:2,自引:2,他引:0  
利用CAD/MCNP自动建模程序MCAM建立ITER新上窗口中子学计算模型,使用中子/光子耦合输运程序MCNP/4CI、AEA聚变核数据库FENDL1.0和集成上窗口模型的ITER基本中子学模型计算并分析上窗口新的工程设计的屏蔽能力以检验设计的合理性。结果表明,与以前的上窗口设计相比,新设计的上窗口的周围剂量控制点的快中子注量率、停堆剂量率以及线圈核热等都增大了好几倍,建议进一步改进上窗口设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号