共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
融合奇异值分解和主分量分析的人脸识别算法 总被引:7,自引:0,他引:7
提出了奇异值分解(SVD)和主分量分析(PCA)相结合的人脸识别算法。理论上,当两种数据或分类器具有一定的独立性或互补性时,数据融合或分类器融合才能改善识别率。SVD和PCA之间有着明显的互补之处。PCA在图像表示上是最佳的(在均方差意义上),但敏感于位移、旋转等几何变换。而SVD则具有位移、旋转不变性。因此,将这两种方法相结合就有可能提高分类性能(好于单独的SVD方法和单独的PCA方法)。在ORL数据库上的实验表明,SVD和PCA相融合的识别方法的确提高了人脸识别率。 相似文献
3.
Sparse representation methods have exhibited promising performance for pattern recognition. However, these methods largely rely on the data sparsity available in advance and are usually sensitive to noise in the training samples. To solve these problems, this paper presents sparsity adaptive matching pursuit based sparse representation for face recognition (SAMPSR). This method adaptively explores the valid training samples that exactly represent the test via iterative updating. Next, the test samples are reconstructed via the valid training samples, and classification is performed subsequently. The two-phase strategy helps to improve the discriminating power of class probability distribution, and thus alleviates effect of the noise from the training samples to some extent and correctly performs classification. In addition, the method solves the sparse coefficient by comparing the residual between the test sample and the reconstructed sample instead of using the sparsity. A large number of experiments show that our method achieves promising performance. 相似文献
4.
In this paper, a novel Gabor-based kernel principal component analysis (PCA) with doubly nonlinear mapping is proposed for human face recognition. In our approach, the Gabor wavelets are used to extract facial features, then a doubly nonlinear mapping kernel PCA (DKPCA) is proposed to perform feature transformation and face recognition. The conventional kernel PCA nonlinearly maps an input image into a high-dimensional feature space in order to make the mapped features linearly separable. However, this method does not consider the structural characteristics of the face images, and it is difficult to determine which nonlinear mapping is more effective for face recognition. In this paper, a new method of nonlinear mapping, which is performed in the original feature space, is defined. The proposed nonlinear mapping not only considers the statistical property of the input features, but also adopts an eigenmask to emphasize those important facial feature points. Therefore, after this mapping, the transformed features have a higher discriminating power, and the relative importance of the features adapts to the spatial importance of the face images. This new nonlinear mapping is combined with the conventional kernel PCA to be called "doubly" nonlinear mapping kernel PCA. The proposed algorithm is evaluated based on the Yale database, the AR database, the ORL database and the YaleB database by using different face recognition methods such as PCA, Gabor wavelets plus PCA, and Gabor wavelets plus kernel PCA with fractional power polynomial models. Experiments show that consistent and promising results are obtained. 相似文献
5.
6.
In contrast to holistic methods, local matching methods extract facial features from different levels of locality and quantify them precisely. To determine how they can be best used for face recognition, we conducted a comprehensive comparative study at each step of the local matching process. The conclusions from our experiments include: (1) additional evidence that Gabor features are effective local feature representations and are robust to illumination changes; (2) discrimination based only on a small portion of the face area is surprisingly good; (3) the configuration of facial components does contain rich discriminating information and comparing corresponding local regions utilizes shape features more effectively than comparing corresponding facial components; (4) spatial multiresolution analysis leads to better classification performance; (5) combining local regions with Borda count classifier combination method alleviates the curse of dimensionality. We implemented a complete face recognition system by integrating the best option of each step. Without training, illumination compensation and without any parameter tuning, it achieves superior performance on every category of the FERET test: near perfect classification accuracy (99.5%) on pictures taken on the same day regardless of indoor illumination variations, and significantly better than any other reported performance on pictures taken several days to more than a year apart. The most significant experiments were repeated on the AR database, with similar results. 相似文献
7.
8.
A N Rajagopalan Rama Chellappa Nathan T Koterba 《IEEE transactions on image processing》2005,14(6):832-843
We propose a new method within the framework of principal component analysis (PCA) to robustly recognize faces in the presence of clutter. The traditional eigenface recognition (EFR) method, which is based on PCA, works quite well when the input test patterns are faces. However, when confronted with the more general task of recognizing faces appearing against a background, the performance of the EFR method can be quite poor. It may miss faces completely or may wrongly associate many of the background image patterns to faces in the training set. In order to improve performance in the presence of background, we argue in favor of learning the distribution of background patterns and show how this can be done for a given test image. An eigenbackground space is constructed corresponding to the given test image and this space in conjunction with the eigenface space is used to impart robustness. A suitable classifier is derived to distinguish nonface patterns from faces. When tested on images depicting face recognition in real situations against cluttered background, the performance of the proposed method is quite good with fewer false alarms. 相似文献
9.
不同尺度的局部二元模式(LBP)提取了红外人脸图中不同的微结构局部特征。为了挖掘不同尺度中局部特征的相关性,提出了一种基于多尺度LBP 共生直方图的红外人脸识别方法。传统的多尺度LBP 特征提取方法,丢失了对多尺度特征间相关性信息的提取。为了充分考虑微结构间的相关统计信息,提出了多尺度LBP 共生直方图表示方法,以提取包含在红外人脸图像中的有用鉴别特征。多尺度LBP 共生直方图特征表示方法不仅可以消除环境温度对红外人脸图像特征提取的影响,而且还可以增强对局部特征表示的鉴别性。实验结果表明:多尺度局部二元模式共生矩阵可以增强对红外人脸鉴别特征提取的有效性,提出的红外人脸方法的性能优于基于传统多尺度LBP 和单尺度LBP方法,在相同环境情况下和在环境温度变化情况下可以达到99.2%和91.2%的识别率。 相似文献
10.
Illumination compensation using oriented local histogram equalization and its application to face recognition 总被引:2,自引:0,他引:2
Illumination compensation and normalization play a crucial role in face recognition. The existing algorithms either compensated low-frequency illumination, or captured high-frequency edges. However, the orientations of edges were not well exploited. In this paper, we propose the orientated local histogram equalization (OLHE) in brief, which compensates illumination while encoding rich information on the edge orientations. We claim that edge orientation is useful for face recognition. Three OLHE feature combination schemes were proposed for face recognition: 1) encoded most edge orientations; 2) more compact with good edge-preserving capability; and 3) performed exceptionally well when extreme lighting conditions occurred. The proposed algorithm yielded state-of-the-art performance on AR, CMU PIE, and extended Yale B using standard protocols. We further evaluated the average performance of the proposed algorithm when the images lighted differently were observed, and the proposed algorithm yielded the promising results. 相似文献
11.
针对局部二值模式(LBP)特征在低分辨率的人脸图 像上识别率较低的问题,提出了一种基于分块中心对称局部二值模式(CS-LBP,center symmetric local binary pattern)和加权主成分分析(PCA)算法的低分辨率人脸识别算法。 首先利用分块CS-LBP算子提取低分辨率人脸图像的特征;然后利用加权PCA算子对特 征进行降维, 从而得到更强的分类特征;最后利用最近邻分类器选出人脸最优分类类别并计算识别率。在 ORL人脸库上的实验表明,在人脸图像分辨率下降到(12×10)时,本 文算法的识别率仍能达 到85.00%,基本满足了实际运用中对识别率的要求,并且降低了运算 时间。 相似文献
12.
Under the condition of weak light or no light, the recognition accuracy of the mature 2D face recognition technology decreases sharply. In this paper, a face recognition algorithm based on the matching of 3D face data and 2D face images is proposed. Firstly, 3D face data is reconstructed from the 2D face in the database based on the 3DMM algorithm, and the face depth image is obtained through orthogonal projection. Then, the average curvature map of the face depth image is used to enhance the data of the depth image. Finally, an improved residual neural network based on the depth image and curvature is designed to compare the scanned face with the face in the database. The method proposed in this paper is tested on the 3D face data in three public face datasets (Texas 3DFRD, FRGC v2.0, and Lock3DFace), and the recognition accuracy is 84.25%, 83.39%, and 78.24%, respectively. 相似文献
13.
A novel Gabor-based kernel principal component analysis (PCA) method by integrating the Gabor wavelet representation of palm images and the kernel PCA method for palmprint recognition is proposed. The feasibility of the proposed method has been successfully tested on two different public data sets from the PolyU palmprint databases, for which the samples were collected in two different sessions. 相似文献
14.
特征提取和分类器设计是人脸识别算法中的两个关键问题。提出一种基于二次小波变换、PCA算法与BP神经网络的人脸识别算法。该算法采用二次小波变换与PCA相结合的算法提取人脸图像的主要特征,并运用加入动量项的改进BP神经网络算法进行人脸图像分类识别。在MATLAB环境下,利用ORL人脸图像数据库进行了仿真实验,实验结果表明,该算法实现简单、识别速度快、识别率较高。 相似文献
15.
Eigenface-domain super-resolution for face recognition 总被引:4,自引:0,他引:4
Gunturk B.K. Batur A.U. Altunbasak Y. Hayes M.H. III Mersereau R.M. 《IEEE transactions on image processing》2003,12(5):597-606
Face images that are captured by surveillance cameras usually have a very low resolution, which significantly limits the performance of face recognition systems. In the past, super-resolution techniques have been proposed to increase the resolution by combining information from multiple images. These techniques use super-resolution as a preprocessing step to obtain a high-resolution image that is later passed to a face recognition system. Considering that most state-of-the-art face recognition systems use an initial dimensionality reduction method, we propose to transfer the super-resolution reconstruction from pixel domain to a lower dimensional face space. Such an approach has the advantage of a significant decrease in the computational complexity of the super-resolution reconstruction. The reconstruction algorithm no longer tries to obtain a visually improved high-quality image, but instead constructs the information required by the recognition system directly in the low dimensional domain without any unnecessary overhead. In addition, we show that face-space super-resolution is more robust to registration errors and noise than pixel-domain super-resolution because of the addition of model-based constraints. 相似文献
16.
In this paper, we propose a fast and effective new method to reduce the overhead cost of orientation estimation. The proposed method uses the summation of intensity values from segments of image patches and forms a histogram based on those values. As a result, it is faster than SIFT-like algorithms because it does not require computation of gradient orientations and magnitudes. Also, it is as fast as other intensity-based algorithms with better image matching performance. Proposed method could be easily integrated to any image matching algorithms. Test results indicate that SIFT integrated with proposed orientation estimation method produces comparable results as the original multi-angle SIFT algorithm with less execution time. 相似文献
17.
In this paper, we propose a block-based histogram of optical flow (BHOF) to generate hand representation in sign language recognition. Optical flow of the sign language video is computed in a region centered around the location of the detected hand position. The hand patches of optical flow are segmented into M spatial blocks, where each block is a cuboid of a segment of a frame across the entire sign gesture video. The histogram of each block is then computed and normalized by its sum. The feature vector of all blocks are then concatenated as the BHOF sign gesture representation. The proposed method provides a compact scale-invariant representation of the sign language. Furthermore, block-based histogram encodes spatial information and provides local translation invariance in the extracted optical flow. Additionally, the proposed BHOF also introduces sign language length invariancy into its representation, and thereby, produce promising recognition rate in signer independent problems. 相似文献
18.
Orthogonal laplacianfaces for face recognition. 总被引:10,自引:0,他引:10
Deng Cai Xiaofei He Jiawei Han Hong-Jiang Zhang 《IEEE transactions on image processing》2006,15(11):3608-3614
Following the intuition that the naturally occurring face data may be generated by sampling a probability distribution that has support on or near a submanifold of ambient space, we propose an appearance-based face recognition method, called orthogonal Laplacianface. Our algorithm is based on the locality preserving projection (LPP) algorithm, which aims at finding a linear approximation to the eigenfunctions of the Laplace Beltrami operator on the face manifold. However, LPP is nonorthogonal, and this makes it difficult to reconstruct the data. The orthogonal locality preserving projection (OLPP) method produces orthogonal basis functions and can have more locality preserving power than LPP. Since the locality preserving power is potentially related to the discriminating power, the OLPP is expected to have more discriminating power than LPP. Experimental results on three face databases demonstrate the effectiveness of our proposed algorithm. 相似文献
19.
Isometric projection(IsoProjection) is a linear dimensionality reduction method,which explicitly takes into account the manifold structure embedded in the data.However,IsoProjection is non-orthogonal,which makes it extremely sensitive to the dimensions of reduced space and difficult to estimate the intrinsic dimensionality.The non-orthogonality also distorts the metric structure embedded in the data.This paper proposes a new method called orthogonal isometric projection(O-IsoProjection),which shares the same linear character as IsoProjection and overcomes the metric distortion problem of IsoProjection.Similar to IsoProjection,O-IsoProjection firstly constructs an adjacency graph which can reflect the manifold structure embedded in the data and the class relationship between the sample points of face space,and then obtains the projections by preserving such a graph structure.Different from IsoProjection,O-IsoProjection requires the basis vectors to be orthogonal,and the orthogonal basis vectors can be calculated by iterative way.Experimental results on ORL and Yale databases show that O-IsoProjection has better recognition rate for face recognition than Eigenface,Fisherface and IsoProjection. 相似文献
20.
DWT based HMM for face recognition 总被引:1,自引:0,他引:1
Shen Linlin Ji Zhen Bai Li Xu Chen 《电子科学学刊(英文版)》2007,24(6):835-837
A novel Discrete Wavelet Transform (DWT) based Hidden Markov Module (HMM) for face recognition is presented in this letter. To improve the accuracy of HMM based face recognition algorithm, DWT is used to replace Discrete Cosine Transform (DCT) for observation sequence ex- traction. Extensive experiments are conducted on two public databases and the results show that the proposed method can improve the accuracy significantly, especially when the face database is large and only few training images are available. 相似文献