首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temporal biomonitoring studies can assess changes in population exposures to contaminants, but collection of biological specimens with adequate representation and sufficient temporal resolution can be resource-intensive. Newborn Screening Programs (NSPs) collect blood as dried spots on filter paper from nearly all infants born in the United States (U.S.). In this study, we investigated the use of NSP blood spots for temporal biomonitoring by analyzing perfluorooctane sulfonate (PFOS), perfluorooctane sulfonamide (PFOSA), perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) in 110 New York State (NYS) NSP blood spot composite specimens collected between 1997 and 2007, representing a total of 2640 infants. All analytes were detected in > or =90% of the specimens. Concentrations of PFOS, PFOSA, PFHxS, and PFOA exhibited significant exponential declines after the year 2000, coinciding with the phase-out in PFOS production in the U.S. Calculated disappearance half-lives for PFOS, PFHxS, and PFOA (4.4, 8.2, and 4.1 years, respectively) were similar to biological half-lives reported for retired fluorochemical workers. Our results suggest sharp decreases in perinatal exposure of NYS infants to PFOS, PFOSA, PFHxS, and PFOA and demonstrate, for the first time, the utility of NSP blood spots for assessment of temporal trends in exposure.  相似文献   

2.
Pooled serum samples from 3802 Australian residents were analyzed for four perfluoroalkylsulfonates, seven perfluoroalkylcarboxylates, and perfluorooctanesulfonamide (PFOSA). Serum was collected from men and women of five different age groups and from rural and urban regions in Australia. The highest mean concentration was obtained for perfluorooctane sulfonate (PFOS, 20.8 ng/mL) followed by perfluorooctanoic acid (PFOA, 7.6 ng/mL), perfluorohexane sulfonate (PFHxS, 6.2 ng/mL), perfluorononanoic acid (PFNA, 1.1 ng/mL), and PFOSA (0.71 ng/mL). Additional four PFCs were detected in 5-18% of the samples at concentrations near the detection limits (0.1-0.5 ng/mL). An increase in PFOS concentration with increasing age in both regions and genders was observed. The male pool levels of some of the age groups compared to females were higherfor PFOS, PFOA, and PFHxS. In contrast, PFNA concentrations were higher in the female pools. No substantial difference was found in levels of PFCs between the urban and rural regions. The levels are equal or higher than previously reported serum levels in Europe and Asia but lower compared to the U.S.A. These results suggest that emissions from production in the Northern Hemisphere are of less importance for human exposure.  相似文献   

3.
Perfluorooctanesulfonylfluoride (POSF)-based compounds have been manufactured and used in a variety of industrial applications. These compounds degrade to perfluorooctanesulfonate (PFOS) which is regarded as a persistent end-stage metabolite and is found to accumulate in tissues of humans and wildlife. PFOS, perfluorohexanesulfonate (PFHxS), perfluorooctanoate (PFOA), and perfluorooctanesulfonamide (PFOSA) have been found in human sera from the United States. In this study, concentrations of PFHxS, perfluorobutanesulfonate (PFBS), PFOS, perfluorohexanoic acid (PFHxA), PFOA, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), and PFOSA were measured in 85 samples of whole human blood collected from nine cities (eight provinces) in China, including Shenyang (Liaoning), Beijing (Hebei), Zhengzhou (Henan), Jintan (Jiangsu), Wuhan (Hubei), Zhoushan (Zhejiang), Guiyang (Guizhou), Xiamen (Fujian), and Fuzhou (Fujian). Among the 10 perfluorinated compounds (PFCs) measured, PFOS was the predominant compound. The mean concentration of PFOS was greatest in samples collected from Shenyang (79.2 ng/mL) and least in samples from Jintan (3.72 ng/mL). PFHxS was the next most abundant perfluorochemical in the samples. No age-related differences in the concentrations of PFOA, PFOS, PFOSA, and PFHxS were observed. Gender-related differences were found,with males higher for PFOS and PFHxS, and females higher in PFUnDA. Concentrations of PFHxS were positively correlated with those of PFOS, while concentrations of PFNA, PFDA, and PFUnDA were positively correlated with those of PFOA. There were differences in the concentration profiles (percentage composition) of various PFCs in the samples among the nine cities.  相似文献   

4.
Eleven perfluorinated alkyl acids (PFAAs) were analyzed in plasma from a total of 600 American Red Cross adult blood donors from six locations in 2010. The samples were extracted by protein precipitation and quantified by using liquid chromatography tandem mass spectrometry (HPLC/MS/MS). The anions of the three perfluorosulfonic acids measured were perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS). The anions of the eight perfluorocarboxylic acids were perfluoropentanoate (PFPeA), perfluorohexanoate (PFHxA), perfluoroheptanoate (PFHpA), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), and perfluorododecanoate (PFDoA). Findings were compared to results from different donor samples analyzed at the same locations collected in 2000-2001 (N = 645 serum samples) and 2006 (N = 600 plasma samples). Most measurements in 2010 were less than the lower limit of quantitation for PFBS, PFPeA, PFHxA, and PFDoA. For the remaining analytes, the geometric mean concentrations (ng/mL) in 2000-2001, 2006, and 2010 were, respectively, PFHxS: (2.25, 1.52, 1.34); PFOS (34.9, 14.5, 8.3); PFHpA (0.13, 0.09, 0.05); PFOA (4.70, 3.44, 2.44); PFNA (0.57, 0.97, 0.83); PFDA (0.16, 0.34, 0.27), and PFUnA (0.10, 0.18, 0.14). The percentage decline (parentheses) in geometric mean concentrations from 2000-2001 to 2010 were PFHxS (40%), PFOS (76%), and PFOA (48%). The decline in PFOS suggested a population halving time of 4.3 years. This estimate is comparable to the geometric mean serum elimination half-life of 4.8 years reported in individuals. This similarity supports the conclusion that the dominant PFOS-related exposures to humans in the United States were greatly mitigated during the phase-out period.  相似文献   

5.
Perfluoroalkyl chemicals (PFCs) are stable man-made compounds with many industrial and commercial uses. Concern has been raised that they may exert deleterious effects, especially on lipid regulation. We aimed to assess exposure to perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and seven other PFCs in occupational workers from a fluorochemical plant and nearby community residents, and to investigate the association between PFOA and serum biomarkers. Serum biomarkers included not only biochemical parameters, such as lipids and enzymes, but also circulating microRNAs (miRNAs). Samples were analyzed by high-pressure liquid chromatography/tandem mass spectrometry (HPLC-MS/MS). Circulating miRNA levels were detected by quantitative polymerase chain reaction (PCR). Analyses were conducted by correlation and linear regression. We detected PFOS, PFOA, perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) in all samples. The median levels of serum PFOA and PFOS were 284.34 ng/mL and 34.16 ng/mL in residents and 1635.96 ng/mL and 33.46 ng/mL in occupational participants, respectively. To our knowledge, we found for the first time that PFOA was negatively associated with high-density lipoprotein cholesterol (HDL-C) in workers using linear regression after adjusting for potential confounders. Circulating miR-26b and miR-199a-3p were elevated with serum concentration of PFOA. Although the limitations of small sample size and the cross-sectional nature of the current study constrained causal inferences, the observed associations between PFOA and these serum biomarkers warrant further study.  相似文献   

6.
Wildlife from remote locations have been shown to bioaccumulate perfluorinated compounds (PFCs) in their tissues. Twelve PFCs, consisting of perfluorinated carboxylic (PFCA) and sulfonic (PFSA) acids as well as the perfluorooctane sulfonate (PFOS) precursor perfluorooctane sulfonamide (PFOSA), were measured in livers of 68 beluga whales (Delphinapterus leucas) collected from two subpopulations, Cook Inlet and eastern Chukchi Sea, in Alaska between 1989 and 2006. PFOS and PFOSA were the dominant compounds measured in both beluga stock populations, with overall median concentrations of 10.8 ng/g and 22.8 ng/g, respectively. Long-chain perfluorocarboxylates, PFCAs (9 to 14 carbons), were detected in more than 80% of the samples. Perfluoroundecanoic acid (PFUnA) and perfluorotridecanoic acid (PFTriA) made up a large percentage of the PFCAs measured with median concentrations of 8.49 ng/g and 4.38 ng/g, respectively. To compare differences in location, year, sex, and length, backward stepwise multiple regression models of the individual and total PFC concentrations were used. Spatially, the Cook Inlet belugas had higher concentrations of most PFCAs and PFOS (p < 0.05); however, these belugas had a lower median concentration of PFOSA when compared to belugas from the eastern Chukchi Sea (p < 0.05). Temporal trends indicated most PFCAs, PFHxS, PFOS, and PFOSA concentrations increased from 1989 to 2006 (p < 0.05). Males had significantly higher concentrations of PFTriA, ΣPFCA, and PFOS (p < 0.05). Perfluorononanic acid (PFNA) and PFOS showed a significant decrease in concentration with increasing animal length (p < 0.05). These observations suggest the accumulation of PFCs in belugas is influenced by year, location, sex, and length.  相似文献   

7.
This report describes the development of a method for the determination and quantification of perfluoroalkyl substances (PFASs) in beer. A total of 93 beer samples were analyzed for the presence of PFASs by means of liquid chromatography tandem mass spectrometry. The results of this study have made it possible to calculate possible PFAS uptake via beer as well as the potential PFAS-related health risk as a result of beer consumption with regard to the tolerable daily intake (TDI) of perfluoro-n-octanoic acid (PFOA) (1,500 ng/kg bodyweight and day) and perfluorooctane sulfonate (PFOS) (150 ng/kg bodyweight and day). PFOS concentrations above the limit of quantification were detected in 50 % of the samples. The highest PFOS concentration detected in any of the beers was 18.4 ng/L, and the highest PFOA concentration was 56.9 ng/L. The calculated maximum uptake of both substances for which a TDI level exists were 2.44 ng/kg bodyweight/day for PFOA and 0.79 ng/kg bodyweight/day for PFOS assuming that an adult consumed his/her total daily liquid uptake exclusively by drinking 3 L of beer, equivalent to the maximum measured concentration (worst-case scenario). In regard to the model calculations made here, the maximum uptake of PFOA and PFOS via consumption of beer can be considered negligible at 0.85 % of the concentration that would be required to reach the TDI for PFOS and 0.16 % for PFOA.  相似文献   

8.
Serum samples collected from California women at different time periods: 1960s (n = 40), 1980s (n = 30), and 2009 (n = 35) were examined for the presence of 12 perfluorinated compounds (PFCs) using an online SPE-HPLC-MS/MS method. At each time period, perfluorooctane sulfonate (PFOS) was present at the highest concentration, followed by perfluorooctanoic acid (PFOA, except in the 1960s). We found the highest levels of PFOS (median = 42.1 ng/mL) and perfluorohexane sulfonate (PFHxS, median = 1.56 ng/mL) in the 1960s samples, possibly reflecting widespread use of precursor PFCs. PFOS showed a statistically significant drop from the 1960s to the 1980s (28.8 ng/mL ) and to 2009 (9.0 ng/mL ), the latter being in agreement with national data. For PFOA, there was an approximately 10-fold increase in median concentrations from the 1960s (0.27 ng/mL) to the 1980s (2.71 ng/mL), and a slight drop in the 2009 samples (2.08 ng/mL). For longer chain perfluorocarboxylic acids (PFCAs), there was a continuous build-up in serum from the 1960s to 2009. To our knowledge, this is the first study to investigate temporal changes of PFCs over the past 50 years.  相似文献   

9.
Concentrations of 19 perfluorochemicals have been quantified in human blood and in some marine food resources from the region of the Gulf of Gda?sk at the Baltic Sea south coast in Poland. We indicate that in addition to PFOS and PFOA, a further 8 perfluorochemicals bioaccumulate in the human body. Food chain is an important route of exposure for all 10 perfluoroalkyl compounds detected in nonoccupationally exposed humans. Individuals who declared to have a high fish intake in their diet (mainly Baltic fish) on average contained the highest load of all 10 fluorochemicals when compared with the other human subpopulations. Baltic seafood has been found to highly influence human body burden of PFHxS, PFOS, PFOSA, PFHxA, PFHpA, PFNA, PFDA, PFUnDA, and PFDoDA, and to a lesser extent PFOA.  相似文献   

10.
Since 2002, practices in manufacturing polyfluoroalkyl chemicals (PFCs) in the United States have changed. Previous results from the National Health and Nutrition Examination Survey (NHANES) documented a significant decrease in serum concentrations of some PFCs during 1999-2004. To further assess concentration trends of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorohexane sulfonate (PFHxS), and perfluorononanoate (PFNA), we analyzed 7876 serum samples collected from a representative sample of the general U.S. population ≥12 years of age during NHANES 1999-2008. We detected PFOS, PFOA, PFNA, and PFHxS in more than 95% of participants. Concentrations differed by sex regardless of age and we observed some differences by race/ethnicity. Since 1999-2000, PFOS concentrations showed a significant downward trend, because of discontinuing industrial production of PFOS, but PFNA concentrations showed a significant upward trend. PFOA concentrations during 1999-2000 were significantly higher than during any other time period examined, but PFOA concentrations have remained essentially unchanged during 2003-2008. PFHxS concentrations showed a downward trend from 1999 to 2006, but concentrations increased during 2007-2008. Additional research is needed to identify the environmental sources contributing to human exposure to PFCs. Nonetheless, these NHANES data suggest that sociodemographic factors may influence exposure and also provide unique information on temporal trends of exposure.  相似文献   

11.
Perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) are used in a variety of industrial and consumer products and have been detected worldwide in human blood. The sources for human exposure are not well described, but dietary intake is suggested as an important source. In this study of 652 Danish men from the Diet, Cancer and Health cohort, we examined intake of 10 major dietary groups, tap water drinks, alcohol consumption, cooking method, geographical area, age, smoking status, and BMI as potential determinants of PFOA and PFOS plasma levels. Living in the Aarhus area was associated with higher PFOA and PFOS plasma levels compared with living in the Copenhagen area, and never smokers had higher levels than current smokers. Frying as compared with other cooking methods was a determinant of PFOA and PFOS levels. BMI and alcohol consumption were inversely associated with both compounds. Among the dietary groups, only intake of eggs was significantly positively associated with PFOS plasma levels. In future studies, PFOA and PFOS levels in air, dust and water samples should be measured to elucidate further the sources of exposure; exposure through diet needs to be studied in greater detail. Our finding of a higher body burden of PFOA and PFOS among never smokers also warrants further evaluation.  相似文献   

12.
Perfluorooctanesulfonyl fluoride based compounds have been used in a wide variety of consumer products, such as carpets, upholstery, and textiles. These compounds degrade to perfluorooctanesulfonate (PFOS), a persistent metabolite that accumulates in tissues of humans and wildlife. Previous studies have reported the occurrence of PFOS, perfluorohexanesulfonate (PFHxS), perfluorooctanoate (PFOA), and perfluorooctanesulfonamide (PFOSA) in human sera collected from the United States. In this study, concentrations of PFOS, PFHxS, PFOA, and PFOSA were measured in 473 human blood/serum/plasma samples collected from the United States, Colombia, Brazil, Belgium, Italy, Poland, India, Malaysia, and Korea. Among the four perfluorochemicals measured, PFOS was the predominant compound found in blood. Concentrations of PFOS were the highest in the samples collected from the United States and Poland (>30 ng/mL); moderate in Korea, Belgium, Malaysia, Brazil, Italy, and Colombia (3 to 29 ng/mL); and lowest in India (<3 ng/mL). PFOA was the next most abundant perfluorochemical in blood samples, although the frequency of occurrence of this compound was relatively low. No age- or gender-related differences in the concentrations of PFOS and PFOA were found in serum samples. The degree of association between the concentrations of four perfluorochemicals varied, depending on the origin of the samples. These results suggested the existence of sources with varying levels and compositions of perfluorochemicals, and differences in exposure patterns to these chemicals, in various countries. In addition to the four target fluorochemicals measured, qualitative analysis of selected blood samples showed the presence of other perfluorochemicals such as perfluorodecanesulfonate (PFDS), perfluoroheptanoic acid (PFHpA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorododecanoic acid (PFDoA), and perfluoroundecanoic acid (PFUnDA) in serum samples, at concentrations approximately 5- to 10-fold lower than the concentration of PFOS. Further studies should focus on identifying sources and pathways of human exposure to perfluorochemicals.  相似文献   

13.
Perfluorinated compounds (PFCs), such as perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorohexane sulfonate (PFHS), and perfluorooctane sulfonamide (PFOSA) are widely distributed in aquatic ecosystems. Despite studies reporting the occurrence of PFCs in aquatic organisms, the fate of PFCs in tidal flat and marine coastal ecosystems is not known. In this study, we determined concentrations of PFOS, PFOA, PFNA, PFHS, and PFOSA in sediments; benthic organisms, including lugworm, mussel, crab, clam, oyster, and mudskipper fish from tidal flat; and shallow water species, such as filefish, bream, flounder, shark, finless porpoise, gull, and mallard collected from the Ariake Sea, Japan. PFOS and PFOA were detected in most of the samples analyzed, followed by PFNA, PFOSA, and PFHS. In shallow water species, PFOS was the dominant contaminant, and elevated concentrations were found in higher trophic level species, such as marine mammals and omnivorous birds. These results suggest biomagnification of PFOS through the coastal food chain. In contrast, PFOA was the most abundant compound in tidal flat organisms and sediments. PFOA concentrations in sediments, lugworms, and omnivorous mudskippers in tidal flat were approximately 1 order of magnitude greater than the levels of PFOS. This indicates differences in exposure pattern and bioavailability of PFOS and PFOA between shallow water and tidal flat organisms. The accumulation profiles of PFCs were compared with those of organochlorines (polychlorinated biphenyls, PCB), organotin (tributyltin,TBT), and polycyclic aromatic hydrocarbons (PAHs) in tidal flat and shallow water samples collected from the Ariake Sea. Concentrations of PFCs in sediments and in tidal flat organisms were significantly lower than that found for PCBs, TBT, and PAHs. Nevertheless, PFOS concentrations in shallow water species were comparable to and/or significantly greater than those of other classes of contaminants. This implies that the aqueous phase is a major sink for PFCs, which is different from what was observed for nonpolar organic pollutants.  相似文献   

14.
为了评估不同人群通过一次性纸杯摄入全氟辛酸(PFOA)及全氟辛烷磺酸(PFOS)的风险,采用超高效液相色谱串联质谱法测定一次性纸杯中PFOA及PFOS向不同食品中的迁移量,结合调查所得一次性纸杯的消费数据,利用点评估方法计算PFOA及PFOS通过一次性纸杯向不同人群的急性及慢性暴露量,并评估其急慢性暴露风险。结果表明,20种一次性纸杯中,PFOA及PFOS向食品中的迁移量分别为ND~23.70×10-3 ng/cm2、ND~4.10×10-3 ng/cm2;PFOA及PFOS的急性人群暴露量分别为45.67×10-3~168.36×10-3 ng/(kg·d)和7.91×10-3~29.14×10-3 ng/(kg·d),慢性人群暴露量分别为0.16×10-3~4.05×10-3 ng/(kg·d)和0.02×10-3~0.51×10-3 ng/(kg·d),均远低于欧盟推荐的每日摄入耐受量。人群通过一次性纸杯摄入PFOA及PFOS的风险处于可接受的水平。  相似文献   

15.
Perfluorooctanesulfonate (PFOS, CaF17SO3-) has been identified in the serum of nonoccupationally exposed humans and in serum and liver tissue in wildlife. The purpose of this investigation was to determine whether PFOS liver concentrations in humans are comparable to the approximate 30 ng/mL average serum concentrations reported in nonoccupationally exposed subjects. Thirty-one donors (16 male and 15 female, age range 5-74) provided serum and/or liver samples for analysis of PFOS and three other fluorochemicals: perfluorosulfonamide (PFOSA, C8F17SO2NH2), perfluorooctanoate (PFOA, C7F15CO2-), and perfluorohexanesulfonate (PFHxS, C6F13SO3-). Both sera and liver samples were extracted by ion-pair extraction and quantitatively assayed using high-performance liquid chromatography electrospray tandem mass spectrometry. Liver PFOS concentrations ranged from <4.5 ng/g (limit of quantitation, LOQ)to 57.0 ng/g. Serum PFOS concentrations ranged from <6.1 ng/mL (LOQ) to 58.3 ng/mL. Among the 23 paired samples, the mean liver to serum ratio was 1.3:1 (95% confidence interval 0.9:1-1.7:1). This liver to serum ratio is comparable to that reported in a toxicological study of cynomolgus monkeys, which had liver and serum concentrations 2-3 orders of magnitude higher than observed in these human donors. This information may be useful in human risk characterization for PFOS. Liver to serum ratios were not estimated for PFOA, PFHxS, and PFOSA as 90% of the human donor liver samples were determined to be less than the LOQ.  相似文献   

16.
Great variability exists in perfluorooctane sulfonate (PFOS) isomer patterns in human and wildlife samples, including unexpectedly high percentages (e.g., >40%) of branched isomers in human sera. Previous in vitro tests showed that branched PFOS-precursors were biotransformed faster than the corresponding linear isomer. Thus, high percentages of branched PFOS may be a biomarker of PFOS-precursor exposure in humans. We evaluated this hypothesis by examining the isomer-specific fate of perfluorooctane sulfonamide (PFOSA), a known PFOS-precursor, in male Sprague-Dawley rats exposed to commercial PFOSA via food for 77 days (83.0 ± 20.4 ng kg(-1) day(-1)), followed by 27 days of depuration. Elimination half-lives of the two major branched PFOSA isomers (2.5 ± 1.0 days and 3.7 ± 1.2 days) were quicker than for linear PFOSA (5.9 ± 4.6 days), resulting in a depletion of branched PFOSA isomers in blood and tissues relative to the dose. A corresponding increase in the total branched isomer content of PFOS, the ultimate metabolite, in rat serum was not observed. However, a significant enrichment of 5m-PFOS and a significant depletion of 1m-PFOS were observed, relative to authentic electrochemical PFOS. The data cannot be directly extrapolated to humans, due to known differences in the toxicokinetics of PFOS in rodents and humans. However, the results confirm that in vivo exposure to commercially relevant PFOS-precursors can result in a distinct PFOS isomer profile that may be useful as a biomarker of exposure source.  相似文献   

17.
We investigated temporal trends of blood serum levels of 13 perfluorinated alkyl acids (PFAAs) and perfluorooctane sulfonamide (FOSA) in primiparous women (N = 413) from Uppsala County, Sweden, sampled 3 weeks after delivery 1996-2010. Levels of the short-chain perfluorobutane sulfonate (PFBS) and perfluorohexane sulfonate (PFHxS) increased 11%/y and 8.3%/y, respectively, and levels of the long-chain perfluorononanoate (PFNA) and perfluorodecanoate (PFDA) increased 4.3%/y and 3.8%/y, respectively. Concomitantly, levels of FOSA (22%/y), perfluorooctane sulfonate (PFOS, 8.4%/y), perfluorodecane sulfonate (PFDS, 10%/y), and perfluorooctanoate (PFOA, 3.1%/y) decreased. Thus, one or several sources of exposure to the latter compounds have been reduced or eliminated, whereas exposure to the former compounds has recently increased. We explored if maternal levels of PFOS, PFOA, and PFNA during the early nursing period are representative for the fetal development period, using serial maternal serum samples, including cord blood (N = 19). PFAA levels in maternal serum sampled during pregnancy and the nursing period as well as in cord blood were strongly correlated. Strongest correlations between cord blood levels and maternal levels were observed for maternal serum sampled shortly before or after the delivery (r = 0.70-0.89 for PFOS and PFOA). A similar pattern was observed for PFNA, although the correlations were less strong due to levels close to the method detection limit in cord blood.  相似文献   

18.
Rainbow trout (Onchorhynchus mykiss) liver microsomes were incubated with N-ethyl perfluorooctanesulfonamide [N-EtPFOSA, C8F17SO2NH(C2H5)], to examine the possibility of in vitro biotransformation to perfluorooctane sulfonate (PFOS, C8F17SO3-) and perfluorooctanoate (PFOA, C7F15COO-). Incubations were performed by exposing trout liver microsomes to N-EtPFOSA at 8 degrees C in the dark. Reaction mixtures were analyzed after incubation periods of 0, 2, 4, 8, 16, and 30 h for N-EtPFOSA, PFOS, PFOA, and perfluorooctanesulfonamide (PFOSA, C8F17SO2NH2), a suspected intermediate. Amounts of PFOS and PFOSA were found to increase with incubation time, but only background levels of PFOA were detected. Three possible reaction pathways are proposed for the conversion of N-EtPFOSA to PFOS: (i) direct conversion of N-EtPFOSA to PFOS by deethylamination accompanied by conversion of the sulfone group to sulfonate, (ii) deethylation of N-EtPFOSA to PFOSA, followed by deamination to form PFOS, and (iii) direct hydrolysis of N-EtPFOSA. These findings represent the first report indicating a possible biotransformation of a perfluorosulfonamide to PFOS in fish and may help to explain the detection of PFOS, which is relatively involatile, and thus not likely to undergo atmospheric transport, in biota from remote regions.  相似文献   

19.
Perfluorinated compounds (PFCs), such as perfluorooctane sulfonate (PFOS) and related compounds, have been identified as global pollutants and have shown their bioaccumulation into higher trophic levels in the food chain. PFCs have been found in remote areas far from sources, such as the Arctic. In this study spatial and temporal trends in the concentrations of selected PFCs were measured using archived liver samples of ringed seal (Phoca hispida) from East and West Greenland. The samples were collected in four different years at each location, between 1986 and 2003 in East Greenland and between 1982 and 2003 in West Greenland. PFOS was the major contributor to the burden of PFCs in samples, followed by perfluoroundecanoic acid (PFUnA). Perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) were also detected in most samples. Perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonamide (PFOSA) were only found sporadically. Perfluorooctanoic acid was not found in detectable concentrations in any sample. Regression analysis of logarithmic transformed PFOS, PFDA, and PFUnA median concentrations indicated a significant temporal trend with increasing concentrations at both locations. A spatial trend in PFOS concentrations (ANOVA, p < 0.0001) was observed between the two sampling locations, with significantly higher concentrations in seals from East Greenland.  相似文献   

20.
Perfluorinated compounds in house dust from Ohio and North Carolina, USA   总被引:2,自引:0,他引:2  
The perfluoroalkyl acids (PFAAs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), have come under increasing scrutiny due to their persistence, global distribution, and toxicity. Given that their human exposure routes remain poorly characterized, the potential role of house dust needs to be more completely evaluated. In this study, new methods for the analysis of 10 PFAAs and three fluorinated telomer alcohols (FTOHs) were developed for dust samples collected from homes (n = 102) and day care centers (n = 10) in Ohio and North Carolina in 2000-2001. FTOHs were measured by GC/ MS and PFAAs were analyzed by LC-MS/MS. PFOS and PFOA were the most prominent compounds detected, occurring in over 95% of the samples at median concentrations of 201 and 142 ng/g of dust, respectively. Maximal concentrations of PFOS were 12 100 ng/g (95th percentile, 2240 ng/g), PFOA 1960 ng/g (95th percentile, 1200 ng/g), and perfluorohexanesulfonate (PFHS) 35 700 ng/g (95th percentile, 2300 ng/g). The 8:2 FTOH, which is volatile and can degrade to PFOA, had a maximum concentration of 1660 ng/g dust (95th percentile, 669 ng/g). These results indicate that perfluorinated compounds are present in house dust at levels that may represent an important pathway for human exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号