首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
合成了纳米CaCO3表面改性剂AP-01,将此改性剂改性的纳米CaCO3用于硬质聚氯乙烯(PVC)抗冲改性.观察PVC/改性纳米CaCO3复合材料的微观结构,并测试其力学性能.结果表明:改性纳米CaCO3以海岛结构分散于PVC基体中.改性纳米CaCO3加入量在10%时,复合材料缺口冲击强度达到18.2 kJ/m2,而复合材料拉伸强度几乎没有改变.对比普通硬脂酸改性纳米CaCO3增韧PVC,其具有明显的性能优势.  相似文献   

2.
纳米CaCO3/PVC复合材料结构形态与冲击性能   总被引:15,自引:8,他引:15  
对改性纳米CaCO3/PVC复合材料进行冲击强度的测试。结果表明,改性纳米CaCO3可提高PVC复合材料的裂缝引发能和裂缝增长能,其中裂缝增长能的提高尤为明显。复合材料的单缺口冲击强度达到81.1kJ.m^-2。用透射电子显微镜及扫描电子显微镜观察了纲米纳米CaCO3/PVC复合材料的微观结构及断面形态,发现表面改性后纳米CaCO3在PVC基体中达到了纳米级的分散,复合材料的断面产生了大量的网丝状结构。复合材料的微观结构进一步证实了纳米纳米CaCO3对PVC基体的显著增韧作用。  相似文献   

3.
以偶联改性纳米CaCO3和甲基丙烯酸甲酯(MMA)为原料,原位乳液聚合制得PMMA接枝包覆纳米CaCO3,以其与PVC熔融共混制备复合材料,研究了纳米CaCO3在共混体中的分散和与PVC界面的结合.与未改性纳米CaCO3相比,纳米CaCO3接枝包覆PMMA后,在PVC中的分散性能得到明显改善,粒子被分散得更加细小、均匀.PMMA接枝包覆纳米CaCO3与PVC界面间相容性能最好,比小分子改性CaCO3与PVC间的黏结作用更强.采用PMMA包覆纳米CaCO3粒子改性PVC,比未改性纳米CaCO3改性PVC有更好的冲击性能及拉伸性能.  相似文献   

4.
本文合成了系列表面改性剂ADDP并将其用于改性纳米CaCO3。研究了表面改性后纳米CaCO3性质的变化,以及ADDP分子结构和用量对表面改性效果的影响。最后,将改性纳米CaCO3用于填充软质PVC。  相似文献   

5.
聚酯型超分散剂在聚合物中的应用   总被引:4,自引:0,他引:4  
采用聚酯型超分散剂对碳酸钙(CaCO3)进行表面处理,并用其填充改性聚氯乙烯(PVC)和聚丙烯(PP),研究了超分散剂用量、聚合度对复合材料性能的影响。结果表明:超分散剂处理CaCO3的最佳用量与碳酸钙的粒径和表面特性密切相关,处理纳米CaCO3、轻质CaCO3、重质CaCO3的最佳用量分别为4%、2.0%和1.5%;超分散剂处理的纳米CaCO3填充改性PVC具有明显的增强增韧作用,对PVC的改性效果比PP好;超分散剂的最佳聚合度为7。  相似文献   

6.
聚酯超分散剂改性纳米碳酸钙及其应用研究   总被引:6,自引:0,他引:6  
研究了聚酯超分散剂改性纳米碳酸钙.探讨了不同改性剂和改性温度对活化指数的影响,考察了改性前后纳米碳酸钙DOP糊粘度和吸油量的变化。结果表明:聚酯超分散剂干法改性纳米CaCO3比NDZ-201偶联剂湿法改性纳米CaCO3更有效,其最佳用量为4%,最佳改性温度为110℃。聚酯超分散剂改性纳米CaCO3的DOP糊粘度降低了87.6%,吸油值降低了53.9%。聚酯超分散剂改性纳米CaCO3对PVC材料具有增强、增韧作用。  相似文献   

7.
纳米CaCO3的表面改性及其在软PVC中的应用   总被引:6,自引:0,他引:6  
本文合成了系列表面改性剂ADDP,并将其用于改性纳米CaCO3。研究了表面改性后纳米CaCO3的性质及其随ADDP分子结构和用量的变化规律。最后,将改性纳米CaCO3充填改性软质PVC。  相似文献   

8.
徐守芳 《河南化工》2007,24(12):27-30
采用钛酸酯偶联剂和PMMA接枝方法改性纳米碳酸钙,并采用熔融共混法制备了改性纳米CaCO3增韧PVC(CaCO3/PVC)复合材料,研究了复合材料的力学性能。对比于未处理纳米CaCO,和钛酸酯偶联剂处理纳米CaCO3,PMMA接枝聚合改性纳米CaCO3与基体的相容性最好,增韧PVC复合材料的拉伸强度得到较大幅度提高。  相似文献   

9.
纳米CaCO3填充PVC复合材料的力化学增强增韧研究   总被引:6,自引:1,他引:6  
利用振动球磨机对纳米CaCO3进行表面改性,将改性的纳米CaCO3加入PVC中制备PVG/CaCO3复合材料,并对其力学性能进行了研究。结果表明:通过力化学改性CaCO3后,可使其在PVC基体中的分散性和界面相互作用增强,导致其冲击强度、断裂伸长率、拉伸模量大幅增加,而拉伸强度保持不变甚至略有增加。  相似文献   

10.
纳米晶PVC在PVC/CaCO3复合材料中的作用   总被引:4,自引:0,他引:4  
研究了不同粒径的纳米晶PVC的增韧、增强作用及对纳米CaCO3改性时偶联剂对材料力学性能的影响。结果表明:两种粒径的纳米晶PVC均能起到显著的增韧和增强作用,且粒径小的纳米晶PVC作用更明显。材料拉伸强度、冲击强度随偶联剂含量的增加而提高。纳米晶PVC和纳米CaCO3使复合材料达到工程材料的标准。  相似文献   

11.
分别采用十八胺、十二胺和正辛胺对纳米CaCO3进行湿法改性,制备了聚氯乙烯(PVC)/纳米CaCO3复合材料,系统研究了不同改性剂改性的纳米CaCO3对PVC基复合材料力学性能的影响。结果表明:3种改性剂均可以与纳米CaCO3表面结合,形成一有机层,阻止了纳米CaCO3团聚,使改性后的粒子可以均匀分散在PVC基体中;十八胺、十二胺和正辛胺改性后的纳米CaCO3均可显著提高PVC复合材料的缺口冲击强度,并且随着改性剂分子链长度的增加,冲击强度也略有提高;改性纳米CaCO3可以略微提高复合材料的弯曲强度,但材料的拉伸强度略有下降。  相似文献   

12.
分别采用3种不同的改性剂硬脂酸(SA)、钛酸酯HY13B(HY13B)、钛酸酯HY201(HY201)对纳米碳酸钙(CaCO3)进行表面改性,并将其应用于聚氯乙烯(PVC)软质薄膜材料中。通过红外测试对纳米CaCO3进行表征,研究了改性纳米CaCO3对PVC软质薄膜材料力学性能、表面形貌、老化性能的影响。结果表明:HY13B改性的纳米CaCO3添加量为3份时PVC软质薄膜材料的拉伸强度达到了最大值,为16.3 MPa,比未添加纳米CaCO3时提高了2.5%,此时,PVC薄膜材料的断裂伸长率比未添加纳米CaCO3时提高了5.6%。HY13B改性后的纳米CaCO3在基体中的团聚颗粒变小,由HY13B改性后的纳米CaCO3会促进PVC薄膜材料的老化,而HY201改性后的纳米CaCO3会抑制PVC薄膜材料的老化。  相似文献   

13.
纳米CaCO3与矿纤维在PVC中的应用   总被引:1,自引:0,他引:1  
研究了纳米CaCO3和矿纤维对聚氯乙烯(PVC)复合材料力学性能的影响.结果表明.在硬质PVC复合材料中填充材料的形状对PVC复合材料的力学性能影响较大,纤维状的矿纤维比球状的纳米CaCO3作为填充材料对硬质PVC复合材料的力学性能明显要高;而在软质PVC复合材料中,填充材料的形状对拉伸性能的影响较小.  相似文献   

14.
研究了纳米CaCO3和矿纤维对聚氯乙烯(PVC)复合材料力学性能的影响。结果表明,在硬质PVC复合材料中填充材料的形状对PVC复合材料的力学性能影响较大,纤维状的矿纤维比球状的纳米CaCO3作为填充材料对硬质PVC复合材料的力学性能明显要高;而在软质PVC复合材料中,填充材料的形状对拉伸性能的影响较小。  相似文献   

15.
本文合成了系列表面改性剂ADDP ,并将其用于改性纳米CaCO3。研究了表面改性后纳米CaCO3 的性质及其随ADDP分子结构和用量的变化规律。最后 ,将改性纳米CaCO3 充填改性软质PVC。  相似文献   

16.
烷基化聚酯超分散剂改性纳米CaCO3及其在PVC中的应用   总被引:4,自引:0,他引:4  
探讨了不同改性剂、改性温度对纳米CaCO3的活化指数的影响,考察了改性纳米CaCO3前后中的DOP糊黏度和增塑剂吸收量的变化。结果表明:烷基化聚酯超分散剂干法改性纳米CaCO3比NDZ-201偶联剂湿法改性纳米CaCO3更有效,其最佳用量为4%,最佳改性温度为110℃。烷基化聚酯超分散剂改性纳米CaCO3/BOP糊黏度降低了87.6%,增塑剂吸收量降低了53.9%。烷基化聚酯超分散剂改性纳米CaCO3对PVC材料具有增强、增韧作用。  相似文献   

17.
研究了一维CaSO4晶须、二维滑石粉、三维重质CaCO3和零维纳米CaCO3对复合改性聚氯乙烯(PVC)的力学性能影响,分析了改变多维无机材料的比例对改性PVC的性能影响。结果表明,与其他无机材料复合改性PVC相比,一维CaSO4晶须、二维滑石粉、三维重质CaCO3复合改性PVC的综合性能最好,加工性能最佳;一维CaSO4晶须和零维纳米CaCO3添加量为10份时复合改性PVC的冲击性能达到最大值;一维CaSO4晶须、三维重质CaCO3、二维滑石粉按照4/2/1的质量比复合改性PVC时综合性能最佳。  相似文献   

18.
聚甲基丙烯酸甲酯包覆纳米CaCO3改性聚氯乙烯研究   总被引:4,自引:0,他引:4  
研究了聚甲基丙烯酸甲酯(PMMA)包覆纳米CaCO3复合粒子填充聚氯乙烯(PVC)复合材料的加工塑化和力学性能,并与未改性纳米CaCO3的改性效果进行比较。结果发现,填充纳米CaCO3使PVC平衡扭矩和平衡熔融温度均会有所提高,填充未改性碳酸钙增加更大,填充PMMA包覆CaCO3使材料冲击性能提高的幅度大于填充未改性纳米CaCO3,而拉伸强度下降幅度较小。当PMMA包覆CaCO3填充量为8%时缺口冲击强度增加到未改性PVC的194%。冲击缺口断面形态分析表明,采用PMMA包覆CaCO3时,纳米CaCO3在PVC基体中分散均匀、团聚少。  相似文献   

19.
综述了纳米粒子在聚氯乙烯(PVC)增韧改性中的研究现状及作用机理,分别介绍了纳米CaCO3、纳米SiO2、纳米黏土及“核壳”纳米粒子等在PVC增韧改性中的研究与应用,得出了纳米复合技术在PVC增韧改性中均能提高材料韧性和强度的特点。最后,对发展价格低廉的新型纳米增韧增强粒子进行了展望。  相似文献   

20.
李勇 《广州化工》2015,(6):110-111,118
研究纳米CaCO3不同含量共混对PVC的增韧增强改性影响,结果表明纳米CaCO3用量为10%时PVC样品冲击强度和拉伸强度达到最大值,同时随着纳米CaCO3加入量的增加,断裂伸长率一直呈下降趋势。综合实验数据,加工性能良好的PVC中纳米CaCO3的加入量控制在5%~10%较为适宜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号