首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Identification of the major synaptojanin-binding proteins in brain   总被引:2,自引:0,他引:2  
Synaptojanin is a nerve-terminal enriched inositol 5-phosphatase thought to function in synaptic vesicle endocytosis, in part through interactions with the Src homology 3 domain of amphiphysin. We have used synaptojanin purified from Sf9 cells after baculovirus mediated expression in overlay assays to identify two major synaptojanin-binding proteins in rat brain. The first, at 125 kDa, is amphiphysin. The second, at 40 kDa, is the major synaptojanin-binding protein detected, is highly enriched in brain, is concentrated in a soluble synaptic fraction, and co-immunoprecipitates with synaptojanin. The 40-kDa protein does not bind to a synaptojanin construct lacking the proline-rich C terminus, suggesting that its interaction with synaptojanin is mediated through an Src homology 3 domain. The 40-kDa synaptojanin-binding protein was partially purified from rat brain cytosol through a three-step procedure involving ammonium sulfate precipitation, sucrose density gradient centrifugation, and DEAE ion-exchange chromatography. Peptide sequence analysis identified the 40-kDa protein as SH3P4, a member of a novel family of Src homology 3 domain-containing proteins. These data suggest an important role for SH3P4 in synaptic vesicle endocytosis.  相似文献   

2.
Polyphosphoinositides are thought to be mediators of cellular signaling pathways as well as regulators of cytoskeletal elements and membrane trafficking events. It has recently been demonstrated that a class of phosphatidylinositol (PI) 3,4,5-P3 5'-phosphatases contains SH2 domains and proline-rich regions, which are present in many signaling proteins. We report here that insulin stimulation of Chinese hamster ovary cells (CHO-T) expressing human insulin receptors causes an 8-10-fold increase in PI 3,4,5-P3 5'-phosphatase activity in anti-phosphotyrosine immunoprecipitates of the cell lysates. This insulin-sensitive polyphosphoinositide 5'-phosphatase did not catalyze dephosphorylation of PI 4,5-P2. No change in 5'-phosphatase activity was detected in insulin receptor or IRS-1 immune complexes in response to insulin. However, insulin treatment of CHO-T cells markedly increased the PI 3,4,5-P3 5'-phosphatase activity associated with Shc and Grb2. The insulin-regulated polyphosphoinositide 5'-phosphatase was not immunoreactive with antibody raised against the recently cloned SHIP 5'-phosphatase reported to associate with Shc and Grb2 in B lymphocytes. These data demonstrate that insulin causes formation of complexes containing a PI 3,4,5-P3 5'-phosphatase, and Shc or Grb2, or both, suggesting an important role of this enzyme in insulin signaling.  相似文献   

3.
Distinct forms of inositol and phosphatidylinositol polyphosphate 5-phosphatases selectively remove the phosphate from the 5-position of the inositol ring from both soluble and lipid substrates, i.e., inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), inositol 1,3,4, 5-tetrakisphosphate (Ins(1,3,4,5)P4), phosphatidylinositol 4, 5-bisphosphate (PtdIns(4,5)P2) or phosphatidylinositol 3,4, 5-trisphosphate (PtdIns(3,4,5)P3). In mammalian cells, this family contains a series of distinct genes and splice variants. All inositol polyphosphate 5-phosphatases share a 5-phosphatase domain and various protein modules probably responsible for specific cell localisation or recruitment (SH2 domain, proline-rich sequences, prenylation sites, etc.). Type I Ins(1,4,5)P3 5-phosphatase also uses Ins(1,3,4,5)P4 but not the phosphoinositides as substrates. This enzyme is targeted to specific membranes by means of a prenylation site. Type II 5-phosphatases can use both PtdIns(4,5)P2 and PtdIns(3,4,5)P3 as substrates. Five mammalian enzymes and multiple splice variants are known: INPP5P or inositol polyphosphate 5-phosphatase II, OCRL (a Golgi protein implicated in the Lowe oculocerebrorenal syndrome), synaptojanin (a protein involved in the recycling of synaptic vesicles), SHIP 1 and SHIP 2 (or SH2-containing inositol 5-phosphatases). As discussed in this review, the substrate specificity, regulatory mechanisms, subcellular localisation and tissue specificity indicate that the different 5-phosphatase isoforms may play specific roles. As known in the dephosphorylation of tyrosine containing substrates by the tyrosine protein phosphatases or in the metabolism of cyclic nucleotides by the cyclic nucleotide phosphodiesterases, inositol polyphosphate 5-phosphatases directly participate in the control of second messengers in response to both activation or inhibitory cell signalling.  相似文献   

4.
Grb10 and its close homologues Grb7 and Grb14, belong to a family of adapter proteins characterized by a proline-rich region, a central PH domain, and a carboxyl-terminal Src homology 2 (SH2) domain. Their interaction with a variety of activated tyrosine kinase receptors is well documented, but their actual function remains a mystery. The Grb10 SH2 domain was isolated from a two-hybrid screen using the MEK1 kinase as a bait. We show that this unusual SH2 domain interacts, in a phosphotyrosine-independent manner, with both the Raf1 and MEK1 kinases. Mutation of the MEK1 Thr-386 residue, which is phosphorylated by mitogen-activated protein kinase in vitro, reduces binding to Grb10 in a two-hybrid assay. Interaction of Grb10 with Raf1 is constitutive, while interaction between Grb10 and MEK1 needs insulin treatment of the cells and follows mitogen-activated protein kinase activation. Random mutagenesis of the SH2 domain demonstrated that the Arg-betaB5 and Asp-EF2 residues are necessary for binding to the epidermal growth factor and insulin receptors as well as to the two kinases. In addition, we show that a mutation in Ser-betaB7 affects binding only to the receptors, while a mutation in Thr-betaC5 abrogates binding only to MEK1. Finally, transfection of Grb10 genes with specific mutations in their SH2 domains induces apoptosis in HTC-IR and COS-7 cells. These effects can be competed by co-expression of the wild type protein, suggesting that these mutants act by sequestering necessary signaling components.  相似文献   

5.
A 150-kDa protein that inhibits phospholipase D (PLD) activity stimulated by ADP-ribosylation factor and phosphatidylinositol 4, 5-bisphosphate (PI(4,5)P2) was previously purified from rat brain. The sequences of peptides derived from the purified PLD inhibitor now identify it as synaptojanin, a nerve terminal protein that has been implicated in the endocytosis of fused synaptic vesicles and shown to be a member of the inositol polyphosphate 5-phosphatase family. Further characterization of the enzymatic properties of synaptojanin now shows that it hydrolyzes only the 5-phosphate from inositol 1,4,5-trisphosphate (I(1,4,5)P3) and that it does not catalyze the dephosphorylation of either I(1,3,4)P3 or inositol 1, 4-bisphosphate. However, synaptojanin hydrolyzes both the 4- and 5-phosphates of PI(4,5)P2 and the 4-phosphate of phosphatidylinositol 4-phosphate, converting both compounds to phosphatidylinositol. Magnesium is required for the hydrolysis of I(1,4,5)P3, but not for that of phosphoinositides, by synaptojanin. The inhibition of PLD by synaptojanin is attributable to its ability to hydrolyze PI(4,5)P2. Synaptojanin did not inhibit PLD in the absence of PI(4,5)P2, and the extent of PLD inhibition was related to the extent of PI(4,5)P2 hydrolysis in substrate vesicles. It has been proposed that the biosynthesis of PI(4,5)P2 and the activation of PLD by ADP-ribosylation factor constitute a positive loop to increase rapidly the concentrations of PI(4,5)P2 and phosphatidic acid (PA) during membrane vesiculation. The PA thus produced, probably together with PI(4,5)P2, facilitates vesicle coat assembly. The hydrolysis of PI(4,5)P2, and consequent inhibition of PLD, by synaptojanin might therefore constitute a mechanism to halt the positive loop connecting PI(4,5)P2 and PA during the endocytotic cycle of synaptic vesicles and serve as a signal for uncoating.  相似文献   

6.
Recently c-Cbl has been reported to be phosphorylated upon CSF-1 stimulation. The product of the c-cbl proto-oncogene (c-Cbl) is a 120 kDa protein harboring several docking sites for Src homology 2 (SH2) domain containing proteins and proline-rich regions that have been shown to allow its constitutive association with the SH3 domains of Grb2. We demonstrate here that CSF-1 exposure of stable transfectant CHO cells expressing the CSF-1 receptor induced the sustained tyrosine phosphorylation of c-Cbl and its subsequent association with Crk-II and the p85 kDa subunit of the PI 3-kinase, while it constitutively associates with Grb2. We demonstrate by in vitro experiments that these associations require the SH2 domain of Crk-II and both the C- and N-terminal SH2 domains of the p85 subunit of the PI 3-kinase. cCbl is the major PI 3-kinase-containing protein in c-Fms expressing CHO cells upon CSF-1 stimulation. Thus c-Cbl behaves as a core protein, allowing the formation of a quaternary complex including, Crk-II, PI 3-kinase and Grb2. We provide evidence that this multiprotein complex can interact with the tyrosine phosphorylated CSF-1 receptor through the unoccupied SH2 domain of Grb2.  相似文献   

7.
Disabled-2 (Dab2), a mammalian structural homolog of Drosophila Disabled (Dab), is a mitogen-responsive phosphoprotein. It has been speculated to be a negative regulator of growth since its expression is lost in ovarian carcinomas. Dab2 contains a C-terminal proline-rich domain with sequences similar to those found in Sos, a guanine nucleotide exchange factor for Ras. The proline-rich sequences of Sos mediate the interaction of Sos with Grb2, an adaptor protein which coupled tyrosine kinase receptors to Sos. Herein, we have investigated the possibility that Dab2 interacts with Grb2. In experiments of co-immunoprecipitation from BAC1.2F5 macrophage cell lysates, significant quantities of Grb2 were associated with both Sos and Dab2, although Dab2 and Sos were not present in the same complex. Transfection of Dab2 into a Dab2-negative cell line (293 cells) decreased the amount of Grb2 associated with Sos, suggesting that Dab2 competes with Sos for binding to Grb2. Proline-rich peptides corresponding to Dab2 (#661-669) and to Sos (#1146-1161) inhibited the binding of Dab2 to Grb2, but were less effective in disrupting the Grb2-Sos complex. The expressed proline-rich domain of Dab2 (#600-730) bound Grb2, but other regions of Dab2 failed to bind Grb2. Both of the individual SH3 domains of Grb2 bound to Sos (N-terminal SH3 domain > C-terminal SH3 domain), but binding to Dab2 required the intact Grb2, suggesting cooperative binding using both SH3 domains of Grb2. These data indicate that Dab2 binds to the SH3 domains of Grb2 via its C-terminal proline-rich sequences. Dab2 may modulate growth factor/Ras pathways by competing with Sos for binding to Grb2.  相似文献   

8.
Immunoreceptors such as the high affinity IgE receptor, FcepsilonRI, and T-cell receptor-associated proteins share a common motif, the immunoreceptor tyrosine-based activation motif (ITAM). We used the yeast tribrid system to identify downstream effectors of the phosphorylated FcepsilonRI ITAM-containing subunits beta and gamma. One novel cDNA was isolated that encodes a protein that is phosphorylated on tyrosine, contains a Src-homology 2 (SH2) domain, inositolpolyphosphate 5-phosphatase activity, three NXXY motifs, several proline-rich regions, and is called SHIP. Mutation of the conserved tyrosine or leucine residues within the FcepsilonRI beta or gamma ITAMs eliminates SHIP binding and indicates that the SHIP-ITAM interaction is specific. SHIP also binds to ITAMs from the CD3 complex and T cell receptor zeta chain in vitro. SHIP protein possesses both phosphatidylinositol-3,4,5-trisphosphate 5'-phosphatase and inositol-1,3,4,5-tetrakisphosphate 5'-phosphatase activity. Phosphorylation of SHIP by a protein-tyrosine kinase, Lck, results in a reduction in enzyme activity. FcepsilonRI activation induces the association of several tyrosine phosphoproteins with SHIP. SHIP is constitutively tyrosine-phosphorylated and associated with Shc and Grb2. These data suggest that SHIP may serve as a multifunctional linker protein in receptor activation.  相似文献   

9.
Tyrosine phosphorylation of cellular proteins mediates the assembly and localization of effector proteins through interactions facilitated by modular Src homology 2 (SH2) and phosphotyrosine binding domains. We describe here two tyrosine-phosphorylated proteins with Mr values of 70,000 and 68,000 that interact with Grb2, phospholipase C (PLCgamma1 and PLCgamma2), and Vav after B cell receptor cross-linking. The interaction of pp70 and pp68 with PLC and Vav is mediated by the carboxyl-terminal SH2 domain of PLC and the SH2 domain of Vav. In contrast, the interaction of pp70 and pp68 with Grb2 requires cooperative binding of the SH2 and SH3 domains of Grb2. Western blot analysis demonstrated that neither pp70 nor pp68 represented the recently described linker protein SLP-76, which binds Grb2, PLC, and Vav in T cells after T cell receptor activation. Moreover, SLP-76 protein was not detected in a number of B cell lines or in normal mouse B cells. Hence, we propose that pp70 and pp68 likely represent B cell homologs of SLP-76 which facilitate and coordinate B cell activation.  相似文献   

10.
Src homology 3 (SH3) and WW protein interaction domains bind specific proline-rich sequences. However, instead of recognizing critical prolines on the basis of side chain shape or rigidity, these domains broadly accepted amide N-substituted residues. Proline is apparently specifically selected in vivo, despite low complementarity, because it is the only endogenous N-substituted amino acid. This discriminatory mechanism explains how these domains achieve specific but low-affinity recognition, a property that is necessary for transient signaling interactions. The mechanism can be exploited: screening a series of ligands in which key prolines were replaced by nonnatural N-substituted residues yielded a ligand that selectively bound the Grb2 SH3 domain with 100 times greater affinity.  相似文献   

11.
Numerous recent studies have implicated the src homology 2 and 3 domain-containing protein, Grb2, in coupling protein tyrosine kinase signaling pathways with the Ras signaling pathway. Ligation of the T cell antigen receptor results in the activation of both a PTK, and Ras; therefore, we investigated whether Grb2 may serve a similar function in T cells. Here we report that a GST/Grb2 fusion protein associates with several tyrosine phosphoproteins from lysates of T cell antigen receptor-stimulated Jurkat T cells. Two of these proteins, pp36 and pp116, bind to the Grb2 fusion protein with high affinity. Through the use of mutated Grb2 fusion proteins, we demonstrate that pp116 binds the amino-terminal src homology 3 domain of Grb2, the same domain of Grb2 thought to be primarily responsible for its interaction with SOS. We demonstrate further that pp116 associates with Grb2 in vivo, and we provide evidence that in the Jurkat T cell line Grb2 may exist complexed with either pp116 or with SOS.  相似文献   

12.
The Shc adaptor protein, hereafter referred to as ShcA, possesses two distinct phosphotyrosine-recognition modules, a C-terminal Src homology 2 (SH2) domain and an N-terminal phosphotyrosine-binding (PTB) domain, and is itself phosphorylated on tyrosine in response to many extracellular signals. Phosphorylation of human ShcA at Tyr-317 within its central (CH1) region induces binding to the Grb2 SH2 domain and is thereby implicated in activation of the Ras pathway. Two shc-related genes (shcB and shcC) have been identified in the mouse. shcB is closely related to human SCK, while shcC has not yet been found in other organisms. The ShcC protein is predicted to have a C-terminal SH2 domain, a CH1 region with a putative Grb2-binding site, and an N-terminal PTB domain. The ShcC and ShcB SH2 domains bind phosphotyrosine-containing peptides and receptors with a specificity related to, but distinct from, that of the ShcA SH2 domain. The ShcC PTB domain specifically associates in vitro with the autophosphorylated receptors for nerve growth factor and epidermal growth factor. These results indicate that ShcC has functional SH2 and PTB; domains. In contrast to shcA, which is widely expressed, shcC RNA and proteins are predominantly expressed in the adult brain. These results suggest that ShcC may mediate signaling from tyrosine kinases in the nervous system, such as receptors for neurotrophins.  相似文献   

13.
SH3 domains are protein modules that interact with proline-rich polypeptide fragments. Cbl is an adapter-like protein known to interact with several SH3 domains, including the PLCgamma1 SH3 domain and the Grb2 amino terminal SH3 domain. Here we explore whether sequences surrounding the PLCgamma1 SH3 domain core sequence (aa.796-851) can affect the binding to Cbl, a target used as a prototypical ligand. Consistent with previous reports, our results demonstrated a weak binding of Cbl to GST fusion proteins that strictly encompass the structural core of the PLCgamma1 SH3 domain but a high-avidity binding to the Grb2 amino-terminal SH3 domain. Inclusion of amino acids immediately flanking the PLCgamma1 SH3 core domain, however, substantially increased binding of Cbl to a level comparable to that of the Grb2 amino-terminal SH3 domain. The interaction of this extended PLCgamma1 SH3 domain fusion protein with Cbl was shown to depend entirely upon the interaction of the domain with a proline-rich motif in Cbl, ruling out the possibility that amino acids adjacent to the core SH3 domain of PLCgamma1 provide independent Cbl binding. These data suggest that sequences surrounding the SH3 domain of PLCgamma1 may contribute to or stabilize the association of the domain with the target protein, thus increasing its binding efficiency.  相似文献   

14.
TCR engagement activates phospholipase C gamma 1 (PLC gamma 1) via a tyrosine phosphorylation-dependent mechanism. PLC gamma 1 contains a pair of Src homology 2 (SH2) domains whose function is that of promoting protein interactions by binding phosphorylated tyrosine and adjacent amino acids. The role of the PLC gamma 1 SH2 domains in PLC gamma 1 phosphorylation was explored by mutational analysis of an epitope-tagged protein transiently expressed in Jurkat T cells. Mutation of the amino-terminal SH2 domain (SH2(N) domain) resulted in defective tyrosine phosphorylation of PLC gamma 1 in response to TCR/CD3 perturbation. In addition, the PLC gamma 1 SH2(N) domain mutant failed to associate with Grb2 and a 36- to 38-kDa phosphoprotein (p36-38), which has previously been recognized to interact with PLC gamma 1, Grb2, and other molecules involved in TCR signal transduction. Conversely, mutation of the carboxyl-terminal SH2 domain (SH2(C) domain) did not affect TCR-induced tyrosine phosphorylation of PLC gamma 1. Furthermore, binding of p36-38 to PLC gamma 1 was not abrogated by mutations of the SH2(C) domain. In contrast to TCR/CD3 ligation, treatment of cells with pervanadate induced tyrosine phosphorylation of either PLC gamma 1 SH2(N) or SH2(C) domain mutants to a level comparable with that of the wild-type protein, indicating that pervanadate treatment induces an alternate mechanism of PLC gamma 1 phosphorylation. These data indicate that the SH2(N) domain is required for TCR-induced PLC gamma 1 phosphorylation, presumably by participating in the formation of a complex that promotes the association of PLC gamma 1 with a tyrosine kinase.  相似文献   

15.
To analyze the growth factor receptor-bound protein 2 (Grb2) signaling pathway in lymphoid cells, we used expression cloning to isolate the genes encoding proteins that associate with Grb2. We find that the Src homology 3 domains of Grb2 directly associate, in vitro and in vivo, with murine hemopoietic specific protein 1 (HS1), a protein identical to Lck-binding protein 1. Because HS1 associates with the p56(lck) and p59(lyn) tyrosine kinases in vitro and in vivo, and becomes tyrosine phosphorylated upon various receptor stimulations, our present data suggest that HS1 mediates linkage between Lck or Lyn and Grb2 in lymphoid lineage cells.  相似文献   

16.
The major isoform of fibroblast growth factor 3 (FGF3) is initiated from a CUG codon, and the resultant product is distributed to the nucleus/nucleolus and secretory pathway. This dual subcellular localization is achieved in part by the competing effects of two classical intracellular targeting signals located near the amino terminus. At the extreme amino terminus is a short stretch of 29 amino acids before a signal peptide necessary for translocation into the endoplasmic reticulum, which is next to an adjacent bipartite nuclear localization signal. The carboxyl-terminal region of FGF3 is also implicated in nuclear/nucleolar localization. We describe here the characterization of carboxyl-terminal signals by showing they are capable of directing a heterologous protein, beta-galactosidase, to the nucleus. Furthermore, appending both the amino- and carboxyl-terminal domains onto beta-galactosidase, reproduces the dual subcellular localization properties of FGF3. Nuclear uptake of FGF3 appears to be signal-mediated since it binds to karyopherin alpha, the nuclear localization signal binding subunit of a heterodimeric receptor of the nuclear import machinery. The import of FGF3 into the nucleus is energy-dependent, and the inhibition of this process has demonstrated the importance of the nucleolar retention signal in nucleoplasmic and nucleolar accumulation.  相似文献   

17.
CD28 provides a costimulatory signal that results in optimal activation of T cells. The signal transduction pathways necessary for CD28-mediated costimulation are presently unknown. Engagement of CD28 leads to its tyrosine phosphorylation and subsequent binding to Src homology 2 (SH2)-containing proteins including the p85 subunit of phosphatidylinositol 3'-kinase (PI3K); however, the contribution of PI3K to CD28-dependent costimulation remains controversial. Here we show that CD28 is capable of binding the Src homology 3 (SH3) domains of several proteins, including Grb2. The interaction between Grb2 and CD28 is mediated by the binding of Grb2-SH3 domains to the C-terminal diproline motif present in the cytoplasmic domain of CD28. While the affinity of the C-terminal SH3 domain of Grb2 for CD28 is greater than that of the N-terminal SH3 domain, optimal binding requires both SH3 domains. Ligation of CD28, but not tyrosine-phosphorylation, is required for the SH3-mediated binding of Grb2 to CD28. We propose a model whereby the association of Grb2 with CD28 occurs via an inducible SH3-mediated interaction and leads to the recruitment of tyrosine-phosphorylated proteins such as p52(shc) bound to the SH2 domain of Grb2. The inducible interaction of Grb2 to the C-terminal region of CD28 may form the basis for PI3K-independent signaling through CD28.  相似文献   

18.
We screened a Xenopus laevis oocyte cDNA expression library with a Src homology 3 (SH3) class II peptide ligand and identified a 1270-amino acid-long protein containing two Eps15 homology (EH) domains, a central coiled-coil region, and five SH3 domains. We named this protein Intersectin, because it potentially brings together EH and SH3 domain-binding proteins into a macromolecular complex. The ligand preference of the EH domains were deduced to be asparajine-proline-phenylalanine (NPF) or cyclized NPF (CX1-2NPFXXC), depending on the type of phage-displayed combinatorial peptide library used. Screens of a mouse embryo cDNA library with the EH domains of Intersectin yielded clones for the Rev-associated binding/Rev-interacting protein (RAB/Rip) and two novel proteins, which we named Intersectin-binding proteins (Ibps) 1 and 2. All three proteins contain internal and C-terminal NPF peptide sequences, and Ibp1 and Ibp2 also contain putative clathrin-binding sites. Deletion of the C-terminal sequence, NPFL-COOH, from RAB/Rip eliminated EH domain binding, whereas fusion of the same peptide sequence to glutathione S-transferase generated strong binding to the EH domains of Intersectin. Several experiments support the conclusion that the free carboxylate group contributes to binding of the NPFL motif at the C terminus of RAB/Rip to the EH domains of Intersectin. Finally, affinity selection experiments with the SH3 domains of Intersectin identified two endocytic proteins, dynamin and synaptojanin, as potential interacting proteins. We propose that Intersectin is a component of the endocytic machinery.  相似文献   

19.
The production, survival and function of monocytes and macrophages are regulated by the macrophage colony-stimulating factor (M-CSF or CSF-1) through its tyrosine kinase receptor Fms. Binding of M-CSF results in Fms autophosphorylation on specific tyrosines that act as docking sites for intracellular signaling molecules containing SH2 domains. Using a yeast two-hybrid screen, we cloned a novel adaptor protein which we called 'Mona' for monocytic adaptor. Mona contains one SH2 domain and two SH3 domains related to the Grb2 adaptor. Accordingly, Mona interacts with activated Fms on phosphorylated Tyr697, which is also the Grb2-binding site. Furthermore, Mona contains a unique proline-rich region located between the SH2 domain and the C-terminal SH3 domain, and is apparently devoid of any catalytic domain. Mona expression is restricted to two hematopoietic tissues: the spleen and the peripheral blood mononuclear cells, and is induced rapidly during monocytic differentiation of the myeloid NFS-60 cell line in response to M-CSF. Strikingly, overexpression of Mona in bone marrow cells results in strong reduction of M-CSF-dependent macrophage production in vitro. Taken together, our results suggest an important role for Mona in the regulation of monocyte/macrophage development as controlled by M-CSF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号