首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Yang  G. Pahlavan  K. Holt  T. 《Electronics letters》1992,28(13):1182-1184
A deterministic model of indoor radio propagation that uses ray tracing techniques is introduced. This model is suitable for analysing the performance of sector antenna systems in an indoor radio environment. Using this model, the effects of sectorisation of the antenna on the data rate limitations of BPSK and BPSK/DFE modems, operating in an indoor radio channel are analysed.<>  相似文献   

3.
This paper proposes a stochastic multipath model that is useful for generating multiple-input–multiple-output (MIMO) channel matrices in time-variant environments. The multipath model is developed by first extracting the relevant multipath cluster characteristics from measured indoor channel data and subsequently capturing these characteristics in an autoregressive stochastic model. This model is then used to generate channel matrices whose space–time characteristics closely match those of realistic scenarios, particularly when birth and death of multipath clusters are included in the stochastic representation. Computational examples reveal the applicability and the accuracy of the approach. While the current implementation is based on data taken assuming that propagation is confined to the horizontal plane, this paper also discusses the extension of the model to describe 3-D propagation, enabling its application to a wide range of physical scenarios and antenna characteristics.   相似文献   

4.
To test an adaptive array algorithm in cellular communications, we developed a geometry‐based statistical channel model for radio propagation environments, which provides the statistics of the angle of arrival and time of arrival of the multipath components. This channel model assumes that each multipath component of the propagating signal undergoes only one bounce traveling from the transmitter to the receiver and that scattering objects are located according to Gaussian and exponential spatial distributions, and a new scatterer distribution is proposed as a trade‐off between the outdoor and the indoor propagation environments. Using the channel model, we analyze the effects of directional antennas at the base station on the Doppler spectrum of a mobile station due to its motion and the performance of its MIMO systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This paper reports link-level Monte Carlo simulations for a system that is compatible with the physical layer of the 5-GHz IEEE 802.11a wireless-local-area network and utilizes an adaptive antenna array at the access point for single-user smart-antenna operation, as well as for space-division multiple access (SDMA). For the spatial indoor radio propagation channel, complex impulse-response recordings are used. These are obtained in wideband channel-sounder measurements in three different buildings at 5.3 GHz. Thus, no unrealistic assumptions about channel conditions are involved. The paper studies how the packet-error-rate performance for the downlink (DL) is affected by time evolution of the radio channel that takes place after the uplink operation in which channel estimation is performed, and before DL operation in which the estimated channel information is utilized. Based on simulations two-user SDMA is possible with four-antenna elements under indoor propagation conditions and with six antennas three users can simultaneously be served. Delay spreads, coherence bandwidths, and correlation properties (in space, frequency, and polarization) of the radio channels obtained in the measurements are also discussed. The results suggest that indoor time-division-duplex systems with access-point-controlled scheduling are desirable communication systems which can benefit from SDMA.  相似文献   

6.
This paper examines the outage probabilities of BPSK and BPSK/DFE radio modems with omnidirectional and six-sector antennas. The effects of room size, data rate, transmitted power and sector antenna patterns on the performance of the systems are analyzed. A 2-D ray tracing algorithm is used to model the radio propagation in a typical indoor environment used for wireless LAN applications. The parameters of the radio propagation model are adjusted to fit the results of simulations to the results of empirical measurements with omnidirectional antenna. It is shown that in a line-of-sight (LOS) environment, a six-sector antenna is more effective than a DFE with an omnidirectional antenna at eliminating the effects of multipath. For an obstructed-line-of-sight (OLOS) environment where at least one wall exists between the transmitter and the receiver, the DFE is more effective than the six-sector antenna. It is shown that a BPSK/DFE modem with a six-sector antenna can support data rates close to 20 Mbps  相似文献   

7.
A random matrix model of communication via antenna arrays   总被引:1,自引:0,他引:1  
A random matrix model is introduced that probabilistically describes the spatial and temporal multipath propagation between a transmitting and receiving antenna array with a limited number of scatterers for mobile radio and indoor environments. The model characterizes the channel by its richness delay profile which gives the number of scattering objects as a function of the path delay. Each delay is assigned the eigenvalue distribution of a random matrix that depends on the number of scatterers, receiving antennas, and transmitting antennas. The model allows one to calculate signal-to-interference-and-noise ratios (SINRs) and channel capacities for large antenna arrays analytically and quantifies to what extent rich scattering improves performance.  相似文献   

8.
Spatial and temporal characteristics of 60-GHz indoor channels   总被引:2,自引:0,他引:2  
This article presents measurement results and models for 60-GHz channels. Multipath components were resolved in time by using a sliding correlator with 10-ns resolution and in space by sweeping a directional antenna with 7° half power beamwidth in the azimuthal direction. Power delay profiles (PDPs) and power angle profiles (PAPs) were measured in various indoor and short-range outdoor environments. Detailed multipath structure was retrieved from PDPs and PAPs and was related to site-specific environments. Results show an excellent correlation between the propagation environments and the multipath channel structures. The measurement results confirm that the majority of the multipath components can be determined from image based ray tracing techniques for line-of-sight (LOS) applications. For non-LOS (NLOS) propagation through walls, the metallic structure of composite walls must be considered. From the recorded PDPs and PAPs, received signal power and statistical parameters of angle-of-arrival and time-of-arrival were also calculated. These parameters accurately describe the spatial and temporal properties of millimeter-wave channels and can be used as empirical values for broadband wireless system design for 60-GHz short-range channels  相似文献   

9.
为了研究5G室内走廊环境的毫米波传输特性,通过射线跟踪仿真方法预测了室内走廊环境下73 GHz毫米波MIMO信道特性。介绍了实验的仿真环境和射线跟踪仿真预测的实验方法和具体参数设置。研究了室内走廊环境下73 GHz毫米波MIMO信道的路径损耗、RMS时延扩展和MIMO信道容量变化。发现了路径损耗斜率和RMS时延数值较小。研究MIMO容量随距离变化时发现,收发机沿走廊纵向方向中间处会产生容量峰值,主要是由于该处散射丰富,NLOS分量大。研究MIMO容量特性发现增大天线间距和增大天线阵列规模可以提升容量,但是采用4×64 Massive MIMO相对于采用4×4 MIMO时容量提升较为有限。实验证实了73 GHz毫米波MIMO可以用于室内走廊环境。  相似文献   

10.
This paper clarifies the influence of the antenna configuration on the achievable throughput in a real indoor propagation environment for 2-by-2 single-user (SU) multiple-input multiple-output (MIMO) in the Long Term Evolution (LTE)-Advanced uplink using single carrier-based radio access. In indoor experiments conducted in an office at walking speed, we consider four antenna configurations: co-polarized antennas with a long or small separation, cross-polarized antenna, and a distributed antenna arrangement. The experimental results show that when rank-2 MIMO spatial multiplexing is applied, the cross-polarized antenna configuration achieves a higher user throughput than the other antenna configurations. Furthermore, we show that when closed-loop rank-1 precoding is applied, the cross-polarized antenna configuration is effective in stably achieving a relatively high throughput regardless of the tilt angle of the mobile station transmitter antenna, although the other antenna configurations indicate better throughput under ideal antenna-tilt angle conditions.  相似文献   

11.
A new 3-D urban electromagnetic wave propagation model is presented. It provides fast 3-D deterministic predictions in urban radio configurations and over large areas. The various techniques to make it suitable to the network planning and optimization of large wireless networks are described. The resulting radio propagation maps exhibit seamless coverage between the various environments (dense urban, urban, and suburban). The model efficiently addresses all types of outdoor transmitter configurations (macrocells, minicells, microcells, and picocells) and all types of receiver locations (at ground level, over the rooftop, and at high building floors). It predicts the field strength as well as the dominant specular contributions of the impulse responses to build ray spectra (including delays and angles). Thus, the model may also be used to estimate the performances of new radio systems [diversity and multiple-input–multiple-output (MIMO)]. The narrowband power prediction of the model is evaluated by comparison with microcell measurements. The evaluation stresses the advantage of 3-D modeling compared with the vertical-plane approach or 2-D ray tracing. Finally, the ability of the model to simulate radio wideband characteristics in a complex environment is demonstrated by comparing delay-spread estimates to measurements collected from a high-macrocell transmitter in a hilly city and to arrival angles collected in a suburban macrocell area.   相似文献   

12.
Near to ground radio frequency (RF) propagation path gain (PG) measurements at short distances at antenna height of 50 cm from the ground/floor were made in typical narrow and wide straight indoor corridors at 433/868/915/2400 MHz in a modern multi-storied building. The measurement was performed utilizing RF equipment and comparisons were made with Matlab simulations of ray tracing technique, free space model and ITU-R model along with Full-3D ray tracing model of Wireless Insite (WI) software. Measured PG values showed good agreement with WI in all cases. Path loss exponent (PE) values ranging from 1.22 to 2.13 were observed from the measured data. The research work reported in this paper is predominately geared towards characterizing radio link for wireless sensor networks in typical indoor corridor environments.  相似文献   

13.
We develop a novel three-dimensional (3D) numerical model for rigorously simulating mutual coupling effects on the channel capacity of the multiple input multiple output (MIMO) systems. In this model, the efficient integral equation method mutlilevel Green's function interpolation method (MLGFIM) is for the first time employed to calculate the input admittances and radiation patterns of the transmit and receive antennas of MIMOs. Comparing with the Method of Moments whose complexity is $O(N^{2})$ , MLGFIM has an efficiency of $O(Nlog N)$ and is suitable for efficiently solving antenna arrays problems. To accurately model the EM wave propagation, we 1) use the ray tracing method to obtain the multi-paths and 2) rigorously obtain the dyadic path loss factor model from which a novel stochastic path loss model that is flexible for both the environments with PEC walls and that with infinite thick lossless dielectric walls is devised. Using the proposed model, we successfully analyze mutual coupling effects on the 3D correlation of a 2-by-2 monopole array and the indoor channel capacity of a 20-by-20 planar array and a 20-by-20 icosahedron array. The numerical examples in this paper demonstrate the efficiency of our model for simulating the MIMO system with complex radiators.   相似文献   

14.
An improved MIMO radio channel simulator is proposed, based on the most popular correlation-based MIMO channel model called Kronecker model and the sum-of-sinusoids (SoS) method which is widely used to generate Rayleigh fading waveforms with temporal correlation. Firstly, a simplified simulation model for generating multiple independent Rayleigh fading waveforms is presented, which employs only one random variable to set all Doppler frequency components in all waveforms. Next, a fast spatial correlation calculation technique, in a closed-form expression implemented by the Fourier Transform both for outdoor and indoor multiple cluster scattering environments, is introduced, which accurately reproduces the desired spatial correlation properties and indicates a direct dependence between spatial correlation and channel physical parameters. The ergodic and outage capacity of the simulated channel are also evaluated with respect to different azimuth of arrival and azimuth of departure (AoA/AoD) under the condition of 3GPP SCM (3rd Generation Partnership Project Spatial channel model) [23]. The presented simulator is therefore suitable for the theoretical analysis of MIMO radio systems, including dynamic system simulation.  相似文献   

15.
The paper introduces a model for the stochastic millimeter-wave indoor radio channel. This model relates the stochastic properties of the radio channel to the underlying geometry of the investigated environment. The geometric simplicity of the millimeter-wave channel allows examining fundamental deterministic properties of the wave propagation behavior in environments of predefined randomness, i.e., environments whose dimensions and properties are described by various probability distributions. The influence of the randomness on the radio channel is studied for the down-link of a wireless local area network at 60 GHz. Joint amplitudes of path lengths, angles of departure, and amplitudes, as well as spatial power densities, average power of the direct paths, and k factors are investigated.  相似文献   

16.
In order to evaluate the performance of third-generation mobile communication systems, radio channel models are required. The models should be capable of handling nonstationary scenarios with dynamic evolution of multipath. In this context and due to the introduction of advanced antenna systems to exploit the spatial domain, a further expansion is needed in order to include the nonstationary characteristics of the channel. In an attempt to solve these problems, this paper presents a new stochastic spatio-temporal propagation model. The model is a combination of the geometrically-based single reflection and the Gaussian wide-sense stationary uncorrelated scattering models, and is further enhanced in order to be able to handle nonstationary scenarios. The probability density functions of the number of multipath components, the scatterers' lifetime, and the angle of arrival are calculated to support these features. The input parameters of the model are based on results from measurement campaigns published in the open literature  相似文献   

17.
A review of antennas and propagation for MIMO wireless communications   总被引:4,自引:0,他引:4  
Multiple-input-multiple-output (MIMO) wireless systems use multiple antenna elements at transmit and receive to offer improved capacity over single antenna topologies in multipath channels. In such systems, the antenna properties as well as the multipath channel characteristics play a key role in determining communication performance. This paper reviews recent research findings concerning antennas and propagation in MIMO systems. Issues considered include channel capacity computation, channel measurement and modeling approaches, and the impact of antenna element properties and array configuration on system performance. Throughout the discussion, outstanding research questions in these areas are highlighted.  相似文献   

18.
Constrained least squares detector for OFDM/SDMA-based wireless networks   总被引:1,自引:0,他引:1  
The two major obstacles toward high-capacity indoor wireless networks are distortion due to the indoor channel and the limited bandwidth which necessitates a high spectral efficiency. A combined orthogonal frequency division multiplexing (OFDM)/spatial division multiple access (SDMA) approach can efficiently tackle both obstacles and paves the way for cheap, high-capacity wireless indoor networks. The channel distortion due to multipath propagation is efficiently mitigated with OFDM while the bandwidth efficiency can be increased with the use of SDMA. However, to keep the cost of an indoor wireless network comparable to its wired counterpart's cost, low-complexity SDMA processors with good performance are of special interest. In this paper, we propose a new multiuser SDMA detector which is designed for constant modulus signals. This constrained least squares (CLS) receiver, which deterministically exploits the constant modulus nature of the subcarrier modulation to achieve better separation, is compared in terms of performance and complexity with the zero forcing (ZF) and the minimum mean square error (MMSE) receiver. Additionally, since the CLS detector relies on reliable channel knowledge at the receiver, we propose a strategy for estimating the multiple input multiple output (MIMO) channels. Simulations for a Hiperlan II-based case-study show that the CLS detector significantly outperforms the ZF detector and comes close to the performance of the MMSE detector for QPSK. For higher order M-PSK, the CLS detector outperforms the MMSF detector. Furthermore, the estimation complexity for the CLS detector is substantially lower than that for the MMSE detector which additionally requires estimation of the noise power.  相似文献   

19.
In this paper, we investigate the Multiple-Input Multiple-Output (MIMO) channel capacity in indoor Ricean channels based on MIMO channel measurements at 2.45 GHz. The measured data is analysed using a super resolution parameter estimation algorithm. Our results demonstrate that the line-of-sight (LOS) component in a Ricean scenario influences indoor MIMO performance through increased spatial correlation between array elements. We found that indoor channels with higher values of Ricean K factor have smaller numbers of effective multipath components and increased spatial correlation. Measurement results also showed that, the effect of varying antenna height on indoor MIMO capacity is also due to the spatial correlation of multipath propagation and has a close relationship with the separation between the transmitter and receiver. Zhongwei Tang is currently with the Wireless Technologies Laboratory at CSIRO. He was with Microwave and Wireless Technology Research Laboratory (MWTRL), Information and Communication Group, Faculty of Engineering of the University of Technology Sydney, Australia, where he pursued his Ph.D. Degree. His current research interests include RF propagation, MIMO Space-Time channel measurements, characterization and channel modelling, smart antennas, MIMO systems and array signal processing. Ananda S. Mohan is currently a member of the Faculty of Engineering, University of Technology, Sydney (UTS), Australia where he leads research on antennas, microwaves, wave propagation, and wireless technology. He received a Ph.D. degree in electrical communication engineering from the Indian Institute of Technology, Kharagpur, India and was a Scientist and Senior Scientist at the Research and Training Unit for Navigational Electronics, Hyderabad, India. At UTS, he directed the Sydney microwave design resource centre and was the associate program leader of the co-operative research centre for satellite systems. He currently directs the microwave and wireless technology research laboratory and a core member of the university research centre on health technologies. His current teaching and research interests include wireless mobile communications, microwaves and antennas, smart antennas and applications of microwave and wireless technology in medicine and has obtained many competitive research grants in these areas. Dr. Mohan was a co-recipient of the Priestly memorial award from the Institute of Radio and Electronic Engineers (IREE), Australia. He was a member of the organizing and technical Program Committees of the IEEE Globecom'98, APMC 2000, and International Symposium on Wireless Systems and Networks, 2003 and IASTED International Conference on Antennas, Radar, and Wave Propagation, for 2004 and 2005.  相似文献   

20.
Wireless communication systems employing multiple antennas at both the transmitter and receiver have been shown to offer significant gains over single-antenna systems. Recent studies on the capacity of multiple-input-multiple-output (MIMO) channels have focused on the effect of spatial correlation. The joint effect of spatial and temporal correlation has not been well studied. In this paper, a geometric MIMO channel model is presented, which considers motion of the receiver and nonisotropic scattering at both ends of the radio link. A joint space-time cross-correlation function is derived from this model and variates with this joint correlation are generated by using the vector autoregressive stochastic model. The outage capacity of this channel is considered where the effects of antenna spacing, antenna array angle, degree of nonisotropic scattering, and receiver motion are investigated. When n transmit and n receive antennas are employed, it is shown that the outage capacity still increases linearly with respect to n, despite the presence of spatial and temporal correlation. Furthermore, analytical expressions are derived for the ergodic capacity of a MIMO channel for the cases of spatial correlation at one end and at both ends of the radio link. The latter case does not lend itself to numerical evaluation, but the former case is shown to be accurate by comparison with simulation results. The proposed analysis is very general, as it is based on the transmit and receive antenna correlations matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号