首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
尼龙66(PA66)短纤维具有质轻、强度高、耐热性强等优良性能,是橡胶复合材料中常用的增强材料。为改善纤维和橡胶的界面粘结,首先采用高效环保的紫外光辐照纤维表面,在此基础上接枝端羧基液体橡胶进行改性,制备了PA66短纤维/天然橡胶复合材料,考察了紫外光辐照时间对纤维及复合材料性能的影响。结果表明,紫外光辐照PA66短纤维表面4min,浸渍2g液体橡胶后,PA66短纤维/天然橡胶复合材料的100%定伸应力提高了11.3%,300%定伸应力提高了9.23%,PA66短纤维与天然橡胶复合材料的界面粘结效果得到明显改善。  相似文献   

2.
BN/PA66导热复合材料制备与研究   总被引:2,自引:0,他引:2  
采用熔融挤出法制备了BN/PA66导热复合材料,通过导热性能测试、力学性能测试、耐热性能测试和DSC等方法研究了BN含量对BN/PA66复合材料的导热性能、力学性能、耐热性能和结晶性能等的影响。结果表明:在实验范围内,当BN体积分数达到24.8%时,BN/PA66复合材料导热系数λ为0.751W/(m.K),约为纯PA66的2.2倍。随BN含量增加,BN/PA66复合材料刚性增加,其热形变温度大幅度提高。  相似文献   

3.
采用注塑方法制备了多孔纳米磷灰石/聚酰胺26 (n2 HA/ PA26) 复合材料 , 采用 SEM、XRD、IR、 力学性能测试考察了多孔材料的性能。结果发现 : 多孔纳米磷灰石/聚酰胺26复合材料的孔隙分布均匀 , 贯通性良好 , 孔的尺寸约为 100~700μm , 平均孔径约 300~500μm , 大孔壁上有丰富的微孔 ; 所得多孔复合材料的孔隙率可控 , 总孔隙率最高可达 881 6 %; 多孔材料的总孔隙率降低 , 则开孔率随之降低 ; 多孔纳米磷灰石/聚酰胺26 复合材料的抗压强度为 1. 1~15. 6 MPa , 压缩模量为 0. 4~1. 4 GPa ; 在总孔隙率相近的条件下 , 多孔材料的抗压强度随 n2 HA质量分数增加而升高; 发泡剂和发泡过程对组成纳米磷灰石/聚酰胺26复合材料的两组元材料的性质和结构无影响。这种多孔材料可望作为人体非承重部位的植入骨修复体和组织工程支架使用。  相似文献   

4.
采用原位聚合法制备了三元共聚尼龙6-66-1010(PA6-66-1010)与原位浇铸尼龙6(MCPA6)的共混复合材料。利用差示扫描量热法(DSC)、动态热机械分析(DMA)、力学性能测试和扫描电子显微镜(SEM)表征复合材料的结晶熔融行为、动态力学性能、力学性能及断裂破坏形貌。结果表明,PA6-66-1010的加入,使得复合材料中MCPA6分子间的氢键作用减弱、分子链活动性增加;复合材料的结晶温度、熔融温度、结晶度随着PA6-66-1010含量的增加而下降;PA6-66-1010的加入,破坏了MCPA6分子间氢键的规整性,使得复合材料韧性得到提高而强度变化不大;当PA6-66-1010含量为10%时,复合材料断裂伸长率提高近6倍。  相似文献   

5.
采用X射线衍射、差示量热分析和常规力学性能等测试方法研究了纳米羟基磷灰石增强聚酰胺66(n- HA/ PA66) 复合材料在不同加工条件和后处理工艺下的结晶行为和力学性能。结果表明, 提高样品的退火温度会降低纯PA66 及其复合材料中PA66 的结晶峰强度。在n- HA/ PA66 复合材料中, 基体树脂PA66 的α晶体中只有α2 的结晶峰存在,α1 的结晶峰基本消失。提高复合材料的注射压力, PA66 结晶峰的强度降低, 结晶度增加; 退火温度对材料的结晶度没有明显的影响。复合材料的结晶行为与其力学性能之间有着紧密的联系。   相似文献   

6.
熔融共混法制备PA66/碳纳米管复合纤维的结构与性能   总被引:2,自引:0,他引:2  
采用熔融共混法,在聚己二酸已二胺(PA66)中分别加入不同质量百分含量的羧基化碳纳米管(MWNTs-COOH),制成PA66/MWNTs复合纤维.采用差示扫描量热分析(DSC)和热重分析(TG)对复合纤维的结晶及热学性能进行了分析,用场发射扫描电镜(FESEM)对其表面形貌进行了表征.结果表明,加入了MWNTs-COOH以后,PA66/MWNTs复合纤维的熔点随着MWNTs-COOH含量的变化基本不变,但是结晶度逐渐降低,结晶温度逐渐升高;同时使得复合纤维的开始分解温度和最大分解温度略有升高.MWNTs-COOH在PA66/MWNTs复合纤维中分布均匀,且沿着纤维的轴向呈束状分布.  相似文献   

7.
制备工艺对热压烧结SiC/SiC复合材料结构与性能的影响   总被引:3,自引:0,他引:3  
采用纳米SiC和亚微米SiC粉料作为基体形成原料,通过热压烧结技术制备了SiC/SiC 复合材料.研究了粉料颗粒、烧结温度、烧结压力对复合材料显微结构和各种性能的影响.结果显示,采用纳米碳化硅粉体可有效降低烧结温度,促进复合材料的致密化过程,在1780℃、20MPa条件下可获得性能优良的复合材料.而采用亚微米SiC粉体,复合材料的致密化过程需要较高的温度,但随着密度的增加,基体与纤维之间的作用力增强,不利于性能的提高.  相似文献   

8.
采用模板聚合法合成了具有微孔结构的羟基磷灰石(HA),并用XRD和SEM对HA进行了结构和形貌分析,表明所合成的HA具有微孔结构;用熔融共混法制备了PLA/HA复合材料,测试了材料的弯曲强度并做了体外降解实验。HA含量为5%的样品弯曲强度最大,韧性最好,HA具有减缓PLA降解的作用,HA含量为15%的复合材料的分子量下降速度最慢。  相似文献   

9.
纳米SiC/PA66复合材料的研究   总被引:1,自引:0,他引:1  
采用SiC填充PA66制备出纳米SiC/PA66复合材料。讨论了纳米SiC对PA66耐磨损性能的影响 ,结果表明 :当纳米SiC含量分别在 1 0 %、3%时 ,纳米SiC/PA66复合材料的冲击性能和耐腐蚀性能以及拉伸性能最好 ;并通过扫描电镜对PA66和纳米SiC/PA66的结构进行表征  相似文献   

10.
纳米HA/PA6复合材料的体外生物活性   总被引:2,自引:3,他引:2       下载免费PDF全文
研究了PA6和纳米HA/PA6复合材料在模拟体液(SBF)中的行为变化,用IR,XRD,SEM和EDS等手段对材料的表面变化进行了分析,讨论了PA6和纳米HA/PA6复合材料的稳定性、亲水性和生物活性。结果表明:在SBF中PA6的吸水率大概在6%左右,纳米HA/PA6复合材料的吸水率有少量下降,PA6和纳米HA/PA6复合材料出现一定的溶解和降解。在SBF中,PA6表面形成Ca,P化合物中的Ca/P比例为1.12,与HA的理论值1.67有一定的差别;HA/PA6复合材料在其表面形成了HA沉积物和碳酸取代的磷灰石沉积物,Ca/P逐步变化为1.67,表现出较好的生物活性。复合材料表面沉积的HA和原来合成的HA具有相近的结晶形貌,该复合材料可作为优良的骨修复填充材料和组织工程支架材料。   相似文献   

11.
先利用微层共挤出技术制备高密度聚乙烯(HDPE)/尼龙6(PA6)交替层状材料,并将其造粒,然后在不同的温度下对层状粒料进行模压和微量注塑成型制备HPDE/PA6片状共混物。通过扫描电镜和氧气渗透测试研究二次加工方法和温度对相形态和阻隔性能的影响。通过压板在200℃制备片状共混物,可以保留微层共挤出时形成的PA6片状结...  相似文献   

12.
采用热梯度强制流动化学气相渗积(FCVI)工艺制备SiCf/SiC复合材料,测试了复合材料的性能。制备的复合材料密度达到2.3g/cm3,强度为291 MPa,断裂韧性为11.4 MPa*m1/2。运用SEM,TEM,X射线衍射等分析手段对复合材料的微观结构进行了表征。结果表明:渗积的基体材料为β-SiC,晶粒尺寸为亚微米级,结晶度良好。通过对断口形貌的观察,分析了增韧机制。,SiCf/SiC composite was fabricated by forced flow thermal-gradient chemical vapor infiltration (FCVI). The density of composite is 2.3g/cm3.The flexural strength and fracture toughness of SiCf/SiC compsites were tested: the flexural strength is 291 MPa, the fracture toughness is 11.4 MPa*m1/2. The microscopy structure was characterized by SEM, TEM and X-ray diffraction. The results show that SiC matrix fabricated by FCVI is β-SiC, which has sub-micron grain size and good crystallinity.And the toughening mechanism was also investigated by morphology of the fractrue surface.  相似文献   

13.
首先采用开环聚合合成了PDLLA, 液相-沉淀法合成了HA超微粉, 然后采用液相吸附法制备了HA/PDLLA复合材料. 以纯PDLLA进行对照, 对HA/PDLLA复合材料进行体外降解实验和体内植入实验, 并进行扫描电镜观察. 结果表明HA/PDLLA复合材料较单纯PDLLA材料的降解速度减慢, 机械强度升高, 避免了过早的丧失力学强度. HA颗粒从材料表面脱落后, 成纤维细胞向组织内长入, 并伴有少量新生骨痂的形成, 显示HA/PDLLA复合材料具有良好的降解性能, 一定的成骨性和骨连接性. 24周时, HA/PDLLA材料被组织分隔包裹, 新生骨组织长入材料, 骨愈合情况良好, 具有足够的强度保证实验性松质骨骨折正常愈合.  相似文献   

14.
于景媛  孟秀娟  李强  张峰峰 《材料导报》2014,28(18):56-58,78
采用粉末冶金技术制备了梯度HA/Mg复合材料。研究了HA含量、HA梯度分布情况以及烧结温度对复合材料孔隙度、烧结收缩率和弯曲性能的影响,观察烧结产物的显微组织,并对复合材料的耐腐蚀性能进行测试。研究结果表明:随着梯度HA/Mg复合材料中间层HA含量的增加,梯度HA/Mg复合材料的烧结收缩率降低,孔隙度升高,抗弯强度降低。随着烧结温度的升高,梯度HA/Mg复合材料的烧结收缩率增大,孔隙度降低,抗弯强度增加。耐腐蚀性分析表明,与纯Mg相比,梯度HA/Mg复合材料具有更好的耐腐蚀性能。随着中间层HA含量的增加,腐蚀速率降低,溶液的pH增加缓慢。  相似文献   

15.
通过熔融共混法制备了Sn/Cu/PA6复合材料,在不同的Sn、Cu体积比(VSn/VCu)下研究了金属总含量(?)对复合材料结构和性能的影响.结果表明,在VSn/VCu较高时,金属总含量的增加使金属相形态逐渐由孤立的岛状向物理连续的网络转变;同时,增加金属总含量导致复合材料导电性能、冲击韧性的提升,这与基体内物理连...  相似文献   

16.
以Ca(OH)2和H3PO4为原料,采用冷冻干燥技术制备纳米羟基磷灰石(n-HA),并在其表面接枝聚乳酸(PLA),得到改性的纳米羟基磷灰石(g-HA),采用XRD及FTIR进行表征;借助超声分散用溶液共混法制备g-HA/PLA和n-HA/PLA纳米复合材料。并采用弯曲性能测试、DMA和POM对其力学性能和结晶性能进行表征。结果表明g-HA作为良好的相容剂和异相成核剂,对g-HA在PLA基质中分散性的提高和纳米复合材料界面粘结强度的提高起到了良好的作用,g-HA/PLA纳米复合材料的弯曲模量、玻璃化温度和储能模量均有显著的提高。所采用的制备方法简便易行,具有潜在的工业应用前景。  相似文献   

17.
为制备低电阻率的尼龙66基复合材料,以碳纤维和镍粉(Ni)填充尼龙66制备碳纤维-Ni/尼龙66高导电复合材料。研究填料表面改性和含量对碳纤维-Ni/尼龙66复合材料导电性能和力学性能的影响。结果表明:KH550改性碳纤维和Ni有助于降低碳纤维-Ni/尼龙66复合材料的电阻率。碳纤维-Ni/尼龙66复合材料的电阻率随着碳纤维和Ni含量的增加而减小,且碳纤维和Ni填充尼龙66的导电逾渗阈值均为20wt%,此时制备的碳纤维-Ni/尼龙66复合材料的电阻率为455Ω·cm,熔融温度为202.2℃。碳纤维-Ni/尼龙66复合材料的弯曲强度和拉伸强度随着碳纤维或Ni含量的增加而先增大后减小。当Ni含量为20wt%时,碳纤维-Ni/尼龙66复合材料的弯曲强度和拉伸强度在碳纤维含量分别为20wt%和10wt%时达到最大值,分别为98MPa和70 MPa;当碳纤维含量为20wt%时,碳纤维-Ni/尼龙66复合材料的弯曲强度和拉伸强度则在Ni含量为30wt%和20wt%时达到最大值,分别为120 MPa和67 MPa。  相似文献   

18.
n-HA/PA66/HDPE复合生物材料的制备和性能研究   总被引:4,自引:1,他引:4  
应用纳米羟基磷灰石(n-HA)、聚酰胺66(PA66)和高密度聚乙烯(HDPE)制备了生物医用复合材料。用化学分析法、燃烧实验、热分析、AFM、IR、XRD对复合材料的组成和结构进行了分析,并对复合材料的力学性能进行了研究。结果表明所制备的复合材料组成均一,具有高强柔韧的力学性能,纳米羟基磷灰石、聚酰胺66、高密度聚乙烯三者之间产生了一定的相互作用,形成了稳定的界面结合。因此,该三元复合材料可能成为一种新型的骨修复材料,在生物医学材料的开发和应用研究中具有重要意义。  相似文献   

19.
通过共混挤出制备了尼龙1010(PA1010)/CaCl2复合材料,研究了挤出温度对PA1010/CaCl2复合材料结构与性能的影响。结果表明,随着挤出温度的提高,PA1010/CaCl2复合材料的结晶度越小,结晶不完善程度越大;PA1010/CaCl2复合材料的拉伸强度随熔融挤出温度的提高存在极值现象,冲击强度随熔融挤出温度的提高而增加,弯曲强度随挤出温度的提高而降低。提高挤出温度会降低PA1010/CaCl2复合材料的热变形温度。  相似文献   

20.
采用无压烧结制备出不同Ti-Fe含量的HA/Ti-Fe生物复合材料,对其组织结构和力学性能进行了研究.显微组织的观察表明:均匀分布于HA基体中的金属Ti-Fe增强颗粒呈一种新颖的蛋壳状组织结构,其中核区主要由Fe组成,壳层主要由Ti组成.力学性能测试结果显示:随着Ti-Fe含量的增加,HA/Ti-Fe复合材料的硬度有所下降,但材料的抗弯强度和断裂韧度均明显提高.当Ti-Fe含量为5%时,抗弯强度出现最大值93MPa,与纯HA相比提高了42%;当Ti-Fe含量为15%时,材料的断裂韧度达到最大值1.3MPa·m1/2,较纯HA提高了128%.良好的界面结合和分布于壳层的韧性相Ti是导致材料力学性能大幅提高的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号