首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This paper presents a study of bread baking, mainly from a technological point of view, i.e. focused on transport phenomena and major quality changes occurring during the process. Such study was carried out by numerical simulation of a previously developed and validated mathematical model, which describes the simultaneous heat and mass transfer (with phase change in a moving boundary) taking place in bread during baking. Kinetic models for starch gelatinization and browning development were coupled to the transport model. Input variables to the model were oven temperature, heat transfer coefficient, and bread radius. A total of 105 operating conditions were simulated using the finite element method, and the end point of baking was established for three values of surface lightness. It is shown that an intense heating strategy can produce a browned but unbaked product, besides nutritional quality is negatively affected. Furthermore, minimization of baking time is restricted by internal resistance to heat transfer.  相似文献   

2.
Baking is a relatively complex process involving simultaneous heat and mass transfer coupled with reactions and structural changes. An accurate and physically-meaningful model of baking is useful to assist process design and product quality improvement. The reaction engineering approach (REA), which has been proven to accurately model the drying rate of porous foods, is implemented here to describe the local evaporation/condensation rate during bread baking for the first time. The REA is coupled with a set of equations of conservation of heat and mass transfer to yield the spatial reaction engineering approach (S-REA). The results of modeling match well with the experimental data. The S-REA can also model the browning kinetics during bread baking accurately. The S-REA is readily implemented for process design by implementing it in computational fluid dynamics (CFD)-environment. The S-REA can also be used for optimization to determine baking trajectories to achieve the desired product properties.  相似文献   

3.
A computational fluid dynamics (CFD) model was developed for bread-baking process in a pilot-scale baking oven to find out the effect of hot air distribution and placement of bread on temperature and starch gelatinization index of bread. In this study, product (bread) simulation was carried out with different placements of bread. Simulation results were validated with experimental measurements of bread temperature. This study showed that nonuniform air flow pattern inside the oven cavity leads to uneven temperature distribution. The study with respect to placement of bread showed that baking of bread in upper trays required shorter baking time and gelatinization index compared to those in the bottom tray. The upper tray bread center reached 100 °C at 1200 s, whereas starch gelatinization completed within 900 s, which was the minimum baking index. Moreover, the heat penetration and starch gelatinization were higher along the sides of the bread as compared to the top and bottom portions of the bread.  相似文献   

4.
Radiation is the most dominant heat transfer mode in an electrical heating oven. A 3D CFD model for an electric heating baking oven was developed. Three different radiation models namely, discrete transfer radiation model (DTRM), surface to surface (S2S) and discrete ordinates (DO) were employed for the simulation of the electrical baking oven. All models predicted almost similar results, which tallied well with the experimental measurements. During the full heating cycle, the oven set-point temperature was reached after 360 s. Lower temperature zones occurred near oven wall due to lower air flow. Based on preliminary evaluation of applicability, the DO radiation model was selected for bread baking simulation and validated with the experimental measurement of bread temperature. Bread simulation was carried out to study the profiles of temperature and starch gelatinization of crust and crumb of the product. This study indicated the baking process to be complete at 1500 s when the temperature of bread-center reached 100 °C.  相似文献   

5.
Undesirable qualities of breads baked in nonconventional ovens have been observed by most researchers. The altered heat and mass transfer patterns and much shorter baking times associated with microwave radiation resulted in a crustless product with tougher, coarser, but less firm texture. Insufficient starch gelatinization, microwave-induced gluten changes, and rapidly generated gas and steam caused by the heating mode could be reasons for quality changes in the microwave-baked breads. Although breads baked in an electrical resistance oven did not brown, their interior characteristics and shelf-life were superior to those of products baked in a conventional oven. Bread with a superior keeping quality was obtained using an air impingement convection oven. The determination and explanation of the physical and biochemical changes that occur in products during baking in conventional versus nonconventional ovens are fruitful areas for future research.  相似文献   

6.
The objective of this study was to determine the importance of raw material and processing variables that influence pretzel quality by utilizing a screening experiment design. Eleven variables were selected based on preliminary experiments, and a two‐level‐11‐factor (2 11 ) fractional factorial experimental design was used to screen the variables. Several responses were measured for dough before and after extrusion, for half‐baked and fully baked pretzels. These responses are important indicators of consistency and quality during pretzel processing. Results indicated that flour protein content, the amount of water added to make dough and dough mixing time were important variables influencing dough behavior. Caustic concentration affected brightness of half‐baked pretzels but did not influence the color of the final product. Baking time was the most important factor for both half‐baked product and final product qualities. The hardness of fully baked pretzels was influenced by baking time, temperature in baking oven zone 1, drying time and drying temperature. The color of final products was significantly influenced by baking time, while both baking time and drying temperature affected the moisture content of the final product. A key observation was that none of the raw material or dough processing parameters, within the range tested, influenced final pretzel quality as defined by pretzel moisture content, hardness or color.  相似文献   

7.
A special type of baking oven was developed where crustless bread was made by gently baking the dough at controlled temperature by spraying water at prefixed intervals on the surface of the dough. In this study, a two-dimensional (2D) CFD model for crustless bread during baking has been developed to facilitate a better understanding of the baking process. Simultaneous heat and mass transfer from the bread during baking was successfully simulated. It was found that core temperature of the bread reached at 95 °C at the end of baking where as moisture of the bread satisfies the normal bread quality. The model can be successively applied to study the unsteady heat and mass transfer from the crustless bread during baking.  相似文献   

8.
The increasing trade of ready‐to‐eat foods such as cookies highlights an interest in quality defects during baking. Heat (h and thermal diffusivity) and mass (mass transfer and diffusion coefficients) transfer parameters are significant parameters affecting the quality changes. Therefore, it is important to determine these parameters for modeling and process optimization studies. Among these, the h is important, revealing the relationship between the heating medium and product surface. As baking involves a simultaneous heat and mass transfer involving moisture diffusion and heat conduction inside and convective heat and mass transfer outside, a lumped system method may not be an accurate choice to determine the h value. Changes in the product volume and contact heating from bottom of the product also bring extra challenges to the determination of h. Therefore, the objective of this study was to use realistic approaches including simultaneous heat and mass transfer to determine the changes in h. The heffvalues for the bottom and top surface of the cookies were then determined, applying a numerical procedure where the surface temperature changes were the boundary conditions with evaporation on the surface. The hband ht values increased with baking temperature and varied with baking time. The results of this study showed that evaporative mass flux for the top surface, heat flux for the bottom surface and the product's volume changes were significant in the variation of h values.  相似文献   

9.
Chlorination of wheat flour in the EU countries has been replaced in recent years, to some extent, by heat treated flour which is used to produce high ratio cakes. Heat treated flour allows high ratio recipes to be developed which generate products with longer shelf life, finer texture, moist crumb and sweeter taste. The mechanism by which heat treatment improves the flour is not fully understood, but it is known that during the heat treatment process, protein denaturation and partial gelatinisation of the starch granules occurs, as well as an increase in batter viscosity. Therefore, it is important to optimize the flour heat treatment process, in order to enhance baking quality. Laboratory preparation of heat treated base wheat flour (culinary, soft, low protein) was carried out in a fluidised bed drier using a range of temperatures and times. The gluten was extracted from the final product and its quality was tested, to obtain objective and comparative information on the extent of protein denaturation. The results indicated that heat treatment of flour decreases gluten extensibility and partial gelatinisation of the starch granules occurred. After heat treatment the gluten appeared to retain moisture. The optimum time/temperature for the heat treatment of base flour was 120–130 °C for 30 min with moisture content of ≈12.5%.  相似文献   

10.
Rapid heat transfer methods can be used to speed up the baking process and create new product properties. This study investigates the effect of air jet impingement and infrared radiation (alone or in combination) on crust formation of par‐baked baguettes during post‐baking. The parameters investigated are crust color, crust thickness, total water loss, and heating time. The results show that infrared radiation and jet impingement, as compared with heating in a conventional household oven, increased the rate of color development of the crust and shortened the heating time. The fastest color development was obtained by combining infrared and impingement heating. The water loss rate was increased due to the high heat transfer rate, but the total water loss was reduced because of the shorter heating time. Crust thickness was most dependent on heating time and crust temperature. In general, the crust was thinner for infrared‐heated baguettes.  相似文献   

11.
Baking is a simultaneous heat and mass transfer process commonly applied in the food industry. It is desirable to have a simple, accurate and robust model in order to assist efficient process design and evaluation of product quality. The reaction engineering approach which was proven to be accurate to model several challenging drying cases, was implemented in this study to model the baking of thin layer of cake. The equilibrium activation energy (ΔEv,b) was evaluated according to the baking oven temperature and corresponding humidity. It was then combined with the relative activation energy (ΔEvEv,b) to produce a unique relationship. Results of the modeling indicate that the L-REA can describe the profiles of moisture content and temperature very well. While the results are accurate, the model itself remains simple. Another significant application of the REA for modeling the processing of food products has been made by this research.  相似文献   

12.
Baking is a decisive stage in the production of bakery products, in general—muffins, in particular—for most of the quality attributes of the final products depend on it. The aim of this work is to model the kinetics of muffin crust color development during baking and to evaluate the feasibility of this kinetic model to predict the baking times. Surface color is represented by the Browning Index, and the effect of baking temperature (from 140 to 220 °C) and process convective characteristics (natural convection, forced convection, and steam-assisted forced convection) are analyzed. Minimal baking times are calculated from experimental core temperature measurements. The modeling of browning kinetics, which incorporates the optimal crust color determined by sensory analysis, allows the estimation of optimal baking times. For all the tested conditions t op?>?t min, assuring a product whose inner structure was already totally baked. Finally, minimal, half, and optimal baking times present an exponential dependence with the oven temperature. Besides, there are no significant differences between both forced convection modes.  相似文献   

13.
低持水性稳定型玉米淀粉在烘焙制品中的应用   总被引:1,自引:0,他引:1  
《中国食品工业》1998,(10):24-24
<正> 要制得高质量的面包,面团的性质是关键,这又取决于配料中的纤维素特性。传统面包中的纤维素,如燕麦纤维或小麦麸,因持水性较高,使制成的面团往往较硬、较干,从而降低了面团的弹性,不利于其后的加工工序,而所制成的面包也会较干、组织较密,体积亦相对较  相似文献   

14.
Much research has been done to understand the contribution of different flour constituents to the cookie quality. Most authors agree on the role of starch in cookies, which, although it is the main flour constituent, has a relatively small influence on cookie quality. Flour proteins, which are quantitatively less important than starch, seem to have a more pronounced role in cookie baking. However, in literature, there is no consensus about their role and influence on the product quality. As for starch, there is much more agreement about the role of non-starch polysaccharides and flour lipids. Not only flour, but also other ingredients of the cookie (dough) formula, such as shortening (fat), sugar, and water are important for the quality of the end product. We here provide the different points of view in this area and speculate on the functionality and quality determining properties of flour constituents, sugar, fat, and water and their role and influence during the different stages of cookie baking and on the end quality of sugar-snap cookies.  相似文献   

15.
A multiphase model for simultaneous heat and mass transfer in porous medium was developed to simulate the baking process of a bread product. The model was based on Fourier’s law for conductive heat transfer and Darcy’s and Fick’s laws for mass transfer of liquid (water) and gas (water vapour and CO2) phases. Explicit formulation was adopted for the evaporation rate allowing direct solution of the system of equations. The use of the non equilibrium approach, allowed the implementation of the model in commercial software. Numerical Finite Element Method (FEM) scheme was used to solve the equations. The model was compared with experimental results reported in literature. Results show a good agreement between experimental and numerical results. Sensitivity analysis of the effect of the evaporation rate constant and process operating conditions on the temperature and moisture content were conducted and showed that the baking process was affected mainly by the convective heat transfer and the product initial moisture characteristics.  相似文献   

16.
A model of heat and mass transfer with simultaneous chemical reaction is proposed for analyzing the influence of operating variables on the reducing sugar content at the surface of blanched potatoes. This content is partially responsible for the color of the finished product. The involved parameters (potato thermal conductivity, heat transfer coefficient of the system and kinetic constants for overall reaction of reducing sugar generation) were evaluated in separate experiments. The apparent diffusion coefficient of reducing sugars in potatoes was the only parameter obtained from blanching experiments. Temperature and concentration profiles and effect of blanching temperature on surface reducing sugar content are analyzed using the developed model. The possible underestimation of the diffusion coefficient when simultaneous starch hydrolysis is not taken into account is also considered.  相似文献   

17.
为解决夹心海苔在生产过程中二次高温烘烤导致的生产能耗高、产品品质参差不齐等问题,本论文研究了7.5、15 W/g功率微波联合120、150、180、210℃红外烘烤对比单一红外烘烤对夹心海苔质构、色泽、营养成分、风味以及微生物的影响。结果表明:对比单一红外烘烤,微波联合红外烘烤的夹心海苔质构特性变化显著(P<0.05),其中脆度、胶着性和咀嚼性都呈下降趋势;色泽更趋近于黄绿色,总色差无显著差异,基本营养成分无显著差异。风味物质方面,单一红外烘烤后乙硫醇、辛醛、壬醛相对含量逐渐降低,夹心海苔的特殊风味降低;而微波联合红外烘烤得到的产品含有较多甲硫醚,相对含量高达76.8%,为夹心海苔带来明显的鲜味。微生物方面,微波联合红外烘烤杀灭微生物的效率显著高于单一红外烘烤(P<0.05)。此外,对比单一红外烘烤,联合7.5 W/g微波烘烤能耗降低3.15%~18.78%,在节能上更有优势。综上,本研究利用微波联合红外烘烤生产夹心海苔,使产品色泽优,生产能耗低,微生物杀灭效果好,并能提高产品风味,为夹心海苔烘烤技术的升级提供理论参考。  相似文献   

18.
Two baking times (9 and 24 min) and storage temperatures (4 and 25 °C) were used to explore the impact of heat exposure during bread baking and subsequent storage on amylopectin retrogradation, water mobility, and bread crumb firming. Shorter baking resulted in less retrogradation, a less extended starch network and smaller changes in crumb firmness and elasticity. A lower storage temperature resulted in faster retrogradation, a more rigid starch network with more water inclusion and larger changes in crumb firmness and elasticity. Crumb to crust moisture migration was lower for breads baked shorter and stored at lower temperature, resulting in better plasticized biopolymer networks in crumb. Network stiffening, therefore, contributed less to crumb firmness. A negative relation was found between proton mobilities of water and biopolymers in the crumb gel network and crumb firmness. The slope of this linear function was indicative for the strength of the starch network.  相似文献   

19.
Abstract: Effects of baking method and temperature on surface browning and acrylamide concentration of cookies were investigated. Cookies were baked in natural and forced convection and steam‐assisted hybrid ovens at 165, 180, and 195 °C and at different times. For all oven types, the acrlyamide concentration and surface color of cookies increased with increasing baking temperature. Significant correlation was observed between acrylamide formation and browning index, BI, which was calculated from Hunter L, a, and b color values, and it showed that the BI may be considered as a reliable indicator of acrylamide concentration in cookies. Acrylamide formation and browning index in cookies were considered as the first‐order reaction kinetics and the reaction rate constants, k, were in the range of 0.023 to 0.077 (min?1) and 0.019 to 0.063 (min?1), respectively. The effect of baking temperature on surface color and acrylamide concentration followed the Arrhenius type of equation, with activation energies for acrylamide concentration as 6.87 to 27.84 kJ/mol; for BI value as 19.54 to 35.36 kJ/mol, for all oven types. Steam‐assisted baking resulted in lower acrylamide concentration at 165 °C baking temperature and lower surface color for all temperatures. Steam‐assisted baking is recommended as a healthy way of cooking providing the reduction of harmful compounds such as acrylamide for bakery goods, at a minimal level, while keeping the physical quality. Practical Application: The kinetics of acrylamide formation and browning of cookies will possibly allow definition of optimum baking temperatures and times at convectional and steam‐assisted baking ovens. The kinetic model can be used by developing baking programs that can automatically control especially a new home‐scale steam‐assisted hybrid oven producing healthy products, for the use of domestic consumers.  相似文献   

20.
The convective oven ring cake baking process was investigated experimentally and numerically as a simultaneous heat and mass transfer process. The mathematical model described previously by the authors for cup cake baking was modified to simulate ring cake baking. The heat and mass transfer mechanisms were defined by Fourier’s and Fick’s second laws, respectively. The implicit alternating direction finite difference technique was used for the numerical solution of the representative model. Prior to the utilization of the developed model in predicting the temperature and moisture profiles for ring cake baking, the results of the numerical model were compared with analytical results involving only heat or mass transfer with constant thermo-physical properties. Excellent agreement was observed. The numerical temperature and moisture contents predicted by the model were compared with the experimental profiles. They agreed generally reasonably well with the experimental temperature and moisture profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号