首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A gene encoding a serine-type protease has been cloned from Aquifex pyrophilus using a sequence tag containing the consensus sequence of proteases as a probe. Sequence analysis of the cloned gene reveals an open reading frame of 619 residues that has three canonical residues (Asp-140, His-184, and Ser-502) that form the catalytic site of serine-type proteases. The size of the mature form (43 kDa) and its localization in the cell wall fraction indicate that both the NH2- and COOH-terminal sequences of the protein are processed during maturation. When the cloned gene is expressed in Escherichia coli, it is weakly expressed as active and processed forms. The pH optimum of this protease is very broad, and its activity is completely inactivated by phenylmethylsulfonyl fluoride. The half-life of the protein is 6 h at 105 degreesC, suggesting that it is one of the most heat-stable proteases. The cysteine residues in the mature form may form disulfide bonds that are responsible for the strong stability of this protease, because the thermostability of the protein is significantly reduced in the presence of reducing reagent.  相似文献   

2.
Acidophilic microorganisms grow optimally at pH values between 1-4. They have adapted to the acid condition by maintaining their cytoplasmic pH at a value close to neutrality. Hence, only those (macro)-molecules, which face the acid medium, have had to adapt to this extreme condition. Literature data show that several exoproteins from thermoacidophilic prokaryotes are characterized by a low charge density. It is proposed that this property contributes to the stability of these proteins both below and above the pKa-values of their glutamate and aspartate residues. As an example of an acidophilic protein, the alpha-amylase from the Gram-positive Alicyclobacillus acidocaldarius ATCC27009 was studied. The enzyme is thermoacidophilic, with optima of temperature and pH of 75 degrees C and pH 3, respectively. The nucleotide sequence of the cloned gene (8) indicates that the alpha-amylase belongs to a large family of starch-degrading enzymes with a characteristic catalytic (beta alpha)8-domain. Three essential and probably catalytic acidic residues have been conserved, suggesting that the acidophilic alpha-amylase degrades starch with essentially the same mechanism as do its neutrophilic relatives. Still, the acidophilic protein contains three exchanges in residues uniformally or almost uniformally conserved among all members of the enzyme family. In order to test whether these exchanges contribute to the acidic pH optimum, the alpha-amylase gene was expressed in Escherichia coli. Sonication of the enzyme-producing cells released alpha-amylase activity associated with a 140 kDa protein. The optima of temperature and pH for the protein produced in E. coli were similar to those of the native enzyme. Experiments are underway in which it is tested which residues contribute to the acid pH optimum of the alpha-amylase.  相似文献   

3.
4.
To analyze the degradation of product proteins at the late stage of virus infection in the baculovirus expression system, a cysteine proteinase was purified from hemolymph of Bombyx mori infected with wild-type B. mori nuclear polyhedorosis virus (BmNPV). The purified cysteine proteinase preparation had two protein bands (major 35-kDa active protein and 28-kDa inactive protein) on SDS-PAGE. Based on the N-terminal amino acid sequences of them, it was found that both proteins originated in the cysteine proteinase gene of BmNPV. The purified cysteine proteinase had an optimum pH at 4.0, and also had activities at neutral pHs. When recombinant luciferase was used as a natural substrate, it was degraded rapidly by the cysteine proteinase at the physiological pH of hemolymph. These results suggest that the cysteine proteinase from a BmNPV gene participates in the degradation of foreign protein expressed by the baculovirus system.  相似文献   

5.
We have isolated, cloned and characterized a cDNA from Zea mays L., denoted ZmAP1, coding for an anionic peroxidase. The open reading frame of ZmAP1 starting 72 residues from the 5' end of the cDNA predicts a 37,778 dalton protein of 356 amino acid residues. The protein has high similarity to other peroxidases and contains two peroxidase motifs that carry two highly conserved histidines in the active center. We expressed recombinant ZmAP1 protein in E. coli as a fusion with maltose-binding protein. The fusion protein was biochemically active after addition of hemin to the apoprotein. The maize peroxidase ZmAP1 has a pH optimum at pH 4.0 and a Km of 0.2 mM for the substrate 2,2'-azino-bis-(3-ethyl-benzothiazolin-6-sulfonic acid) at this pH. In maize seedlings the ZmAP1 gene is expressed predominantly in roots, the mesocotyl, the coleoptile and to a lower extent in the node, whereas no expression in the primary leaf was found. In situ hybridization shows that the expression of ZmAP1 in the young maize root is confined to the epidermis, hypodermis and the pericycle.  相似文献   

6.
Complementation of an Escherichia coli cya mutant with a genomic library from Aeromonas hydrophila allowed isolation of clones containing two different cya genes. Whereas one of these genes (cyaA) coded for an adenylyl cyclase (AC1) belonging to the previously described class I adenylyl cyclases (ACs), the second one (cyaB) coded for a protein (AC2) that did not match any previously characterized protein when compared to protein sequence databases. In particular, it did not align with any of members of the three known classes of ACs. The purified AC2 enzyme exhibited remarkable biochemical characteristics, namely, an optimum activity at a high temperature (65 degrees C) and at an alkalinic pH (9.5). In order to investigate the functions of both cyclases in A. hydrophila, each gene was inactivated in the chromosome and the resulting mutant strains were examined for physiological alterations. It was shown that, in contrast to cyaA, the cyaB gene was not expressed under usual laboratory growth conditions. However, introduction of a plasmid harboring the cyaB gene in a cyaA mutant, as well as in a cyaA cyaB mutant, allowed cyclic AMP production. AC2 is the first member of a new class of previously unrecognized ACs, and to date, no functional counterpart has been demonstrated in other organisms. However, scanning databases revealed a significant similarity between AC2 and the gene product of three hyperthermophilic archaebacteria: Methanobacterium thermoautotrophicum, Archaeglobus fulgidus, and Methanococcus jannaschii. The possibility of a gene transfer between such phylogenetically divergent bacteria is discussed.  相似文献   

7.
The ornithine carbamoyltransferase (OTC) gene from Thermus thermophilus was cloned from a lambda-ZAP genomic library. An ORF of 903 bp was found coding for a protein of Mr 33,200. The coding region has a very high overall G+C content of 68.0%. T. thermophilus OTC displays 38-48% amino acid identity with other OTC, the most closely related proteins being OTC from the archaeon Pyrococcus furiosus and from Bacillus subtilis. The enzyme was expressed in Escherichia coli and purified to homogeneity using a thermoshock followed by affinity chromatography on delta-N-phosphonoacetyl-L-ornithine-Sepharose. The native enzyme has an Mr of about 110,000, suggesting a trimeric structure, as for most anabolic OTC from various organisms. T. thermophilus OTC exhibits Michaelis-Menten kinetics for carbamoyl phosphate and ornithine with a Km(app) of 0.10 mM for both substrates. The pH optimum was dependent on ornithine concentration with an optimum at pH 8 for ornithine concentrations around Km values. Higher concentrations shift the optimum towards lower pH. The optimal temperature was above 65 degrees C and the activation energy 39.1 kJ/mol. The enzyme is highly thermostable. In the presence of its substrates the half-life time was several hours at 85 degrees C. Ionic and hydrophobic interactions contribute to the stability. The expression of T. thermophilus OTC was negatively regulated by arginine.  相似文献   

8.
When the genome of the thermophilic archaeon Pyrococcus horikoshii was sequenced, a gene homologous to the mammalian gene for an acylamino acid-releasing enzyme (EC 3.4.19.1) was found in which the enzyme's proposed active residues were conserved. The P. horikoshii gene comprised an open reading frame of 1,896 base pairs with an ATG initiation codon and a TAG termination codon, encoding a 72,390-Da protein of 632 amino acid residues. This gene was overexpressed in Escherichia coli with the pET vector system, and the resulting enzyme showed the anticipated amino-terminal sequence and high hydrolytic activity for acylpeptides. This enzyme was concluded to be the first acylamino acid-releasing enzyme from an organism other than a eukaryotic cell. The existence of the enzyme in archaea suggests that the mechanisms of protein degradation or initiation of protein synthesis or both in archaea may be similar to those in eukaryotes. The enzyme was stable at 90 degreesC, with its optimum temperature over 90 degreesC. The specific activity of the enzyme increased 7-14-fold with heat treatment, suggesting the modification of the enzyme's structure for optimal hydrolytic activity by heating. This enzyme is expected to be useful for the removal of Nalpha-acylated residues in short peptide sequence analysis at high temperatures.  相似文献   

9.
10.
The major outer membrane protein (OMP) of Actinobacillus actinomycetemcomitans is an OmpA homolog that demonstrates electrophoretic heat modifiability. The gene encoding this protein was isolated from a genomic library of A. actinomycetemcomitans NCTC 9710 by immunoscreening with serum from a patient with localized juvenile periodontitis. Expression of the cloned gene in Escherichia coli and subsequent Western blot analysis revealed a protein with an approximate molecular mass of 34 kDa. The amino acid sequence predicted from the cloned gene demonstrated that the mature protein had a molecular mass of 34,911 Da and significant identity to members of the OmpA family of proteins. We have named the major OMP of A. actinomycetemcomitans Omp34, and its corresponding gene has been named omp34.  相似文献   

11.
A gene encoding a nonspecific phosphatase, named PhoN-Sf, was identified on the large virulence plasmid (pMYSH6000) of Shigella flexneri 2a YSH6000. The phosphatase activity in YSH6000 was observed under high-phosphate conditions. However, it was found that low-phosphate conditions induced a slightly higher level of activity. The nucleotide sequence of the phoN-Sf region cloned from pMYSH6000 possessing the phoN-Sf gene encoded 249 amino acids with a typical signal sequence at the N terminus. The deduced amino acid sequence of the PhoN-Sf protein revealed significant homology to sequences of nonspecific acid phosphatases of other bacteria, such as Providencia stuartii (PhoN, 83.2%), Morganella morganii (PhoC, 80.6%), Salmonella typhimurium (PhoN, 47.8%), and Zymomonas mobilis (PhoC, 34.8%). The PhoN-Sf protein was purified, and its biochemical properties were characterized. The apparent molecular mass of the protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was calculated to be 27 kDa. The 20 amino acids at the N terminus corresponded to the 20 amino acid residues following the putative signal sequence of PhoN-Sf protein deduced from the nucleotide sequence. The PhoN-Sf activity had a pH optimum of 6.6, and the optimum temperature was 37 degrees C. The enzymatic activity was inhibited by diisopropyl fluorophosphate, N-bromosuccinimide, or dithiothreitol but not by EDTA. The subcellular localization of the PhoN-Sf protein in YSH6000 revealed that the protein was found predominantly in the periplasm. Examination of Shigella and enteroinvasive Escherichia coli strains for PhoN-Sf production by immunoblotting with the PhoN-specific antibody and for the presence of phoN-Sf DNA by using a phoN-Sf probe indicated that approximately one-half of the strains possessed the phoN-Sf gene on the large plasmid and expressed the PhoN-Sf protein. The Tn5 insertion mutants of YSH6000 possessing phoN-Sf::Tn5 still retained wild-type levels of invasiveness, as well as the subsequent spreading capacity in MK2 epithelial cell monolayers, thus suggesting that the PhoN-Sf activity is not involved in expression of the virulence phenotypes of Shigella strains under in vitro conditions.  相似文献   

12.
The gene nprM encoding the calcium-dependent extracellular proteinase from Bacillus megaterium ATCC 14581 was cloned in the vector pBR322 and expressed in Escherichia coli HB101. The DNA sequence of the cloned 3.7 kb fragment revealed only one open reading frame consisting of 1686 bp with a coding capacity of 562 amino acid residues. A predicted Shine-Dalgarno (SD) sequence was observed 9 bp upstream from the presumptive translation start site (ATG). A possible promoter sequence (TAGACG for the -35 region and TATAAT for the -10 region) was found about 69 bp upstream of the ATG start site. The deduced amino acid sequence exhibited a 24 amino acid residue signal peptide and an additional polypeptide 'pro' sequence of 221 amino acids preceding the putative mature protein of 317 amino acid residues. Amino acid sequence comparison revealed 84.5% homology between the mature protein and that of a thermolabile neutral protease from B. cereus. It also shares 73% homology with the thermostable neutral proteases of B. thermoproteolyticus and B. stearothermophilus. The zinc-binding sites and the catalytic residues are completely conserved in all four proteases. NprM has a temperature optimum of 58 degrees C, a pH optimum of between 6.4 and 7.2, and is stimulated by calcium ions and inhibited by EDTA. These results indicate that the enzyme is a neutral (metallo-) protease.  相似文献   

13.
Two endo-1,4-beta-glucanase genes, designated celA and celB, from a shoyu koji mold Aspergillus oryzae KBN616, were cloned and characterized. The celA gene comprised 877 bp with two introns. The CelA protein consisted of 239 amino acids and was assigned to the cellulase family H. The celB gene comprised 1248 bp with no introns. The CelB protein consisted of 416 amino acids and was assigned to the cellulase family C. Both genes were overexpressed under the promoter of the A. oryzae taka-amylase A gene for purification and enzymatic characterization of CelA and CelB. CelA had a molecular mass of 31 kDa, a pH optimum of 5.0 and temperature optimum of 55 degrees C, whereas CelB had a molecular mass of 53 kDa, a pH optimum of 4.0 and temperature optimum of 45 degrees C.  相似文献   

14.
Classical late-infantile neuronal ceroid lipofuscinosis (LINCL) is a fatal neurodegenerative disease whose defective gene has remained elusive. A molecular basis for LINCL was determined with an approach applicable to other lysosomal storage diseases. When the mannose 6-phosphate modification of newly synthesized lysosomal enzymes was used as an affinity marker, a single protein was identified that is absent in LINCL. Sequence comparisons suggest that this protein is a pepstatin-insensitive lysosomal peptidase, and a corresponding enzymatic activity was deficient in LINCL autopsy specimens. Mutations in the gene encoding this protein were identified in LINCL patients but not in normal controls.  相似文献   

15.
Nuclear factor kappa B (NF-kappa B) is an important regulator of gene expression in cells of the immune system. One such gene, tumor necrosis factor, is induced by bacterial lipopolysaccharide (LPS) in macrophages, and this induction has been shown to be mediated in part by NF-kappa B activation in murine macrophages. In this study, immunochemical analysis was used to follow LPS activation of the NF-kappa B 50-kDa subunit in the RAW264 macrophage-like cell line. The recombinant NF-kappa B 50-kDa subunit was used as an immunogen to produce a rabbit antiserum, which was then affinity-purified using a portion of the NF-kappa B 50-kDa subunit that does not have homology to other members of the c-rel gene family. Untreated macrophages had little NF-kappa B in the nucleus as detected by Western immunoblotting. The protein was predominantly localized in the cytoplasmic fraction. Interestingly, NF-kappa B was found as the 50-kDa mature protein and 105-kDa precursor. After LPS treatment, there was a rapid nuclear translocation of NF-kappa B as detected by immunoblot analysis. There was also a rapid decrease in the amount of the cytoplasmic 105-kDa protein. This may indicate that the 105-kDa protein is a reservoir for the 50-kDa protein and that one of the actions of LPS is to increase the rate of 105-kDa precursor processing.  相似文献   

16.
A gene coding for a protein homologous to a translation initiation factor of eukaryotes, eIF5A, was cloned from Methanococcus jannaschii, a hyperthermophile with an optimum growth temperature of 85 degrees C. The protein was overexpressed, purified and crystallized. The crystals were obtained by vapor diffusion method with 8% PEG 4000 as precipitant and belong to space group P4(1)22 with unit cell dimensions a = b = 45.52 A and c = 155.59 A. These crystals diffract to at least 2.2 A resolution.  相似文献   

17.
DoxA is a cytochrome P-450 monooxygenase involved in the late stages of daunorubicin and doxorubicin biosynthesis that has a broad substrate specificity for anthracycline glycone substrates. Recombinant DoxA was purified to homogeneity from Streptomyces lividans transformed with a plasmid containing the Streptomyces sp. strain C5 doxA gene under the control of the strong SnpR-activated snpA promoter. The purified enzyme was a monomeric, soluble protein with an apparent Mr of 47,000. Purified DoxA catalyzed the 13-hydroxylation of 13-deoxydaunorubicin, the 13-oxidation of 13-dihydrocarminomycin and 13-dihydrodaunorubicin, and the 14-hydroxylation of daunorubicin. The pH optimum for heme activation was pH 7.5, and the temperature optimum was 30 degreesC. The kcat/Km values for the oxidation of anthracycline substrates by purified DoxA, incubated with appropriate electron-donating components, were as follows: for 13-deoxydaunorubicin, 22,000 M-1 x s-1; for 13-dihydrodaunorubicin, 14,000 M-1 x s-1; for 13-dihydrocarminomycin, 280 M-1 x s-1; and for daunorubicin, 130 M-1 x s-1. Our results indicate that the conversion of daunorubicin to doxorubicin by this enzyme is not a favored reaction and that the main anthracycline flux through the late steps of the daunorubicin biosynthetic pathway catalyzed by DoxA is likely directed through the 4-O-methyl series of anthracyclines.  相似文献   

18.
BACKGROUND: A 190k (190-kilodalton) membrane protein has been identified in several multidrug-resistant (MDR) cell lines that show decreased drug accumulation without expression of P-glycoprotein. It is not clear whether this 190k protein is involved directly in drug efflux. Recently, a gene for a putative transporter protein, MRP (multidrug resistance-associated protein) has been sequenced and localized to chromosome 16. The protein encoded by this gene contains a 7-amino-acid sequence present in the synthetic peptide used to generate the antiserum recognizing the 190k protein. PURPOSE: The study was undertaken to clarify the relationship of the 190k protein to MRP gene expression in non-P-glycoprotein-containing MDR cells of the large-cell and adenocarcinoma lung cancer lines, COR-L23 and MOR. METHODS: Expression of the 190k protein was determined by Western blot analysis and that of the MRP gene by polymerase chain reaction amplification of complementary DNA reverse transcribed from RNA. Abnormalities of chromosome 16 were investigated in chromosome spreads by fluorescence in situ hybridization. RESULTS: The amount of detectable 190k protein is closely associated with degree of drug resistance. Cell lines surviving in higher drug concentrations have greater amounts of protein, and revertant lines grown without drug for up to 28 weeks show reduced expression of the protein together with enhanced drug sensitivity. The 190k protein appears to be one of the major proteins differentially expressed in membranes of drug-resistant cells. The amount of MRP messenger RNA correlates closely with that of the 190k protein. The MDR cells contain amplified chromosome 16 material with many double minutes in the large-cell lung tumor lines and an enlarged chromosome 16 in the adenocarcinoma lines. CONCLUSION: The 190k protein detected immunologically is likely to be the protein, encoded by the MRP gene, which becomes overexpressed in these cells as a consequence of chromosomal amplification and fragmentation. IMPLICATION: Though associated with drug resistance, enhanced drug efflux, and decreased drug accumulation in cell lines, the role of this protein in clinical resistance has yet to be determined.  相似文献   

19.
20.
A lysozyme (pI 5.5) was purified to homogeneity from heated acid extracts of Drosophila melanogaster larvae, using gel filtration in a Superose column and ion-exchange chromatography in a Mono Q column. The final yield was 67%. The purified lysozyme with Mr 13,700 (determined by SDS-polyacrylamide gel electrophoresis) decreases in activity and has its pH optimum displaced towards acidic values and Km increases as the ionic strength of the medium becomes higher. The lysozyme is resistant to a cathepsin D-like proteinase present in cyclorrhaphous Diptera and displays a chitinase activity which is 11-fold higher than that of chicken lysozyme. Microsequencing of an internal peptide of the purified lysozyme showed that this enzyme is the product of the previously sequenced Lys D gene. The results suggest that the product of the Lys P gene has pI 7.2, a pH optimum around 5 and is not a true digestive enzyme. The most remarkable sequence convergence of D. melanogaster lysozyme D and lysozymes from vertebrate foregut fermenters are serine 104 and a decrease in the number of basic amino acids, suggesting that these features are necessary for digestive function in an acid environment. Adaptive residues putatively conferring stability in an acid proteolytic environment differ between insects and vertebrates, probably because they depend on the overall three-dimensional structure of the lysozymes. A maximum likelihood phylogeny and inferences from insect lysozyme sequences showed that the recruitment of lysozymes as digestive enzymes is an ancestral condition of the flies (Diptera: Cyclorrhapha).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号