共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
为了分析瓦斯灰湿法脱硫工艺中锌浸出过程的动力学,以云南某高炉瓦斯灰为原料进行脱硫浸出锌试验,分别考察了反应温度、搅拌速度、进口 SO2 浓度和进口流量对锌浸出率的影响,研究了锌的浸出动力学。 结果表明:在反应温度为 40 ℃ 、进气流量为 400 mL / min、搅拌速度为 600 r / min、进口 SO2 浓度为 3. 0 g / m3 的条件下,保证高脱硫率的同时锌的浸出率达到 44. 6%;在 25~ 60 ℃条件下,反应表观活化能 Ea = 23. 4 kJ / mol,表明瓦斯灰脱硫中锌浸出过程遵循收缩核模型,过程受混合控制,采用半经验模型描述该过程,得到搅拌速度,进口 SO2 浓度和进气流量的反应级数分别为 0. 385 7、0. 175 69 和 0. 488 93,建立了半经验动力学方程。 相似文献
3.
4.
为研究高炉瓦斯泥硫酸浸出锌过程的动力学,以河北某高炉瓦斯泥为原料进行了硫酸浸出试验,分别考察了浸出温度、硫酸浓度对浸出过程锌浸出率的影响。随着浸出温度的升高和硫酸浓度的增加,锌浸出率逐渐提高,浸出速率降低。采用Avrami动力学模型对锌浸出过程进行模拟,结果表明,浸出过程符合n=0.160 4的Avrami动力学模型,反应表观活化能为10.02 kJ/mol,说明浸出过程受扩散控制,因此要提高浸出效率,应加强扩散效应。提高硫酸浓度或升高反应温度,加速了溶液中的反应过程和传质过程,锌浸出率提高。试验结果为湿法浸出过程动力学以及固废资源化利用后续研究和生产实践提供了一定的理论依据。 相似文献
5.
6.
7.
为综合利用龙钢炼铁厂中的高锌含量高炉布袋除尘灰,对原料进行了矿物成分分析。结果表明,该除尘灰中锌含量为6.39%,锌主要以氧化锌形式存在。采用硫化-黄药浮选脱锌工艺,确定了最佳工艺参数为硫化钠3 kg/t,水玻璃1 kg/t,六偏磷酸钠2 kg/t,硫酸铜500 g/t,丁基黄药800 g/t,分析了各药剂用量对浮选后精矿中锌指标的影响规律。试验获得锌品位13.44%,锌回收率78.34%的精矿和锌品位0.28%,全铁品位51.73%的尾矿,尾矿锌含量大幅降低,满足作为炼铁原料的技术指标。 相似文献
8.
为了高效回收利用高炉瓦斯灰中的焦炭,采用浮—磁联合工艺对某钢铁公司锌含量为4.43%、碳含量为18.45%的高炉瓦斯灰进行了焦炭回收试验。结果表明:1在煤油用量为800 g/t、松醇油为200 g/t、水玻璃为1 500g/t情况下,1次浮选可以获得碳品位为74.96%、回收率为90.83%、锌含量为1.91%、铁含量为5.19%的浮选精矿;2以磁铁矿为载体,浮选精矿在磨矿细度为-0.074 mm占74.32%、背景磁感应强度为1.5 T的条件下进行强磁选,可获得碳品位为85.17%、回收率达86.29%(对原矿)的焦炭精矿,其锌含量进一步降低为1.29%。该焦炭精矿品质满足返回烧结配矿利用要求。 相似文献
9.
10.
高炉瓦斯灰是一种产量大、富含铁和碳且极具回收利用价值的二次资源。为了研究温度对含锌高炉瓦斯灰烧结的影响, 采用ICP、DTA-TG、XRD和SEM-EDS等手段对山西某钢铁厂的高炉瓦斯灰在不同温度烧结过程中的物相、微观结构及元素含量变化进行了研究。结果表明:高炉瓦斯灰中铁和锌元素主要集中在细颗粒中, 碳元素主要集中在大颗粒中; 随着烧结温度的升高, 高炉瓦斯灰中某些不稳定的无定形物质减少, 稳定的硅酸盐类物质占比增大; 颗粒逐渐变大, 有明显聚集成块的趋势; 铁元素含量增加, 锌元素含量先增加后减小至0.5%, 碳元素含量急剧下降至8.4%后减少变得缓慢。该研究对高炉瓦斯灰的高效利用具有一定的理论指导意义。 相似文献
11.
12.
炼铁高炉烟尘中锌铟的综合利用试验研究 总被引:3,自引:0,他引:3
在对炼铁高炉烟尘经高温挥发二次富集后的锌铟的浸取综合利用试验中,通过大量工艺的研究对比,选择一段中酸浸锌、二段高酸浸铟的工艺,并分别探索出了两段浸取的主要条件,取得了锌铟浸出率高(分别大于98%、92.5%)、生产成本低、工艺简单、生产中易于操作的良好效果. 相似文献
13.
14.
15.
16.
17.
用人工合成的硫化铟模拟实际硫化铟,研究了硫化铟在硫酸体系中常规浸出和以高锰酸钾、双氧水为氧化剂的氧化浸出的浸出效果和工艺条件。结果表明:在搅拌速度为800 r/min、物料粒度为75~96 μm、液固比为300∶1、温度为80 ℃、硫酸初始浓度为2.0 mol/L的条件下,常规浸出60 min,铟的浸出率为84.9%;而在相同条件下加入氧化剂KMnO4或H2O2进行氧化浸出,只需20 min就可使铟的浸出率达到94.9%或92.8%。在温度<70 ℃时,氧化剂的效应起主要作用,高锰酸钾的氧化效果比双氧水更明显;在温度>70 ℃时,温度效应占主导地位,两种氧化剂的影响差别不大。 相似文献