首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Here, a new method for simultaneous determination of diffusion coefficient D and interfacial mass transfer coefficient (or convective mass transfer coefficient) k was proposed for bovine serum albumin (BSA) adsorption into porous polymeric membranes. The experimental data for BSA concentration at different membrane depth and different time were determined from FTIR-mapping measurements. Then the diffusion coefficient D and interfacial mass transfer coefficient k were estimated from the calculated dimensionless concentration data at different time and membrane depth by a trial-and-error method based on the diffusion equation initiated in this paper. The diffusion coefficient D and interfacial mass transfer coefficient k evaluated in this manner are respectively: and . The theoretical concentration values calculated from the determined parameters were compared with experimental reading from FTIR mappings, which showed a good agreement between them, especially for the case of a relatively long-time adsorption.  相似文献   

2.
Patterned films of a low-polydispersity polymer densely end-grafted on a silicon substrate were fabricated for the first time by the combined use of electron beam (EB) lithography and living radical polymerization; a focused EB was scanned on an initiator-immobilized substrate to selectively bombard and decompose the initiator, and then the EB-induced pattern was amplified by the atom transfer radical polymerization (ATRP) technique using Cu/ligand complexes. Ellipsometric and atomic force microscopic studies indicated that doses sufficiently larger than 2000 μC/cm2 would completely decompose the monolayer of the initiator, 2-(4-chlorosulfonylphenyl)ethyltrichlorosilane, and that the surface-initiated ATRP could amplify the EB-produced fine pattern of the initiator monolayer.  相似文献   

3.
We propose an all solid-state (liquid free) polymer electrolyte (SPE) prepared from a hyper-branched graft copolymer. The graft copolymer consisting of a poly(methyl methacrylate) main chain and poly(ethylene glycol) methyl ether methacrylate side chains was synthesized by atom transfer radical polymerization changing the average chain distance between side chains, side chain length and branched chain length of the proposed structure of the graft copolymer. The ionic conductivity of the SPEs increases with increasing the side chain length, branched chain length and/or average distance between the side chains. The ionic conductivity of the SPE prepared from POEM9 whose POEM content = 51 wt% shows 2 × 10−5 S/cm at 30 °C. The tensile strength of the SPEs decreases with increases the side chain length, branched chain length and/or average distance between the side chains. These results indicate that a SPE prepared from the hyper-branched graft copolymer has potential to be applied to an all-solid polymer electrolyte.  相似文献   

4.
Classicalparticle morphologies, core‐shell, hemisphere, sandwich, and so on, were all reproducible by starting from ca. 10‐μm uniform droplets composed of monomers, initiator, solvents, and polymer, and polymerizing them by subsequent suspension polymerization. SPG (Shirasu porous glass) membrane was employed to form uniform size droplets having the coefficient of variation (CV) around 10%. Styrene (ST) and acrylic monomers were used as monomers, and their polymers were dissolved in the droplets to investigate the development of phase separation. When hydrophilic methyl methacrylate (MMA) was polymerized in the droplets with a mixed solvent consisting of hydrophilic hexanol (HA) and hydrophobic benzene and hexadecane (HD), the resulting morphology shifted from hemisphere to sandwich and eventually to PMMA/solvent core‐shell with increasing hydrophilicity of the mixed solvent. The sandwich was converted to the core‐shell after several weeks elapsed. As styrene was added to MMA, the morphology shifted from hemisphere core/solvent shell to raspberry core/solvent shell as the fraction of ST increased. The domain of the mixed solvent in the raspberry core was reduced with increasing the hydrophilicity of the mixed solvent. All these morphologies were eventually converted to the copolymer core/solvent shell. When a mixed monomer of styrene and MMA dissolving polystyrene (PS) was polymerized, the resulting morphology shifted from salami to core‐shell with increasing the MMA fraction in the comonomer. The salami particles were then swollen with toluene, and after the swelling, toluene was removed under the different temperature and pressure. The final particle morphology converted to the core‐shell with a milder rate of toluene removal which was predicted from the thermodynamic model. When styrene and cyclohexyl acrylate (CHA), a pair with widely different reactivity ratios, were copolymerized, salami morphologies, with tiny CHA‐rich domains dispersed in the matrix, were obtained even at a higher fraction of CHA in comonomer. Effects of glass transition temperature of the polymers, molecular weight, and the composition of copolymers were taken in consideration whenever the final morphologies were discussed. By these experiments, the authors tried to demonstrate an advantage of using large uniform spheres for the particle morphology studies. SPG emulsification technique was a potential tool because of its free formulation of the droplets, and the subsequent polymerization could undergo without the breakup or coalescence of the droplets. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2200–2220, 2001  相似文献   

5.
Double-perovskite La2NiMnO6 (LNMO) nanoparticles were synthesized by co-precipitation process, and the adsorption of bovine serum albumin (BSA) protein on these nanoparticles was carried out. The powder samples were annealed at 750, 850, 950, and 1,050°C, respectively. X-ray diffraction (XRD) results reveal that there are double perovskites and exhibit mixed orientations, without any impurity phases. Transmission electron microscopy results as well as the XRD estimate results show that the crystalline size is about 34 to 40 nm. The adsorption of BSA on the magnetic nanoparticles was analyzed using a UV spectrophotometer at room temperature. The results show that the as-prepared LNMO nanoparticles display a good adsorbing ability for BSA, and the nanoparticle sintered at 850°C has the highest value of 219.6 mg/g, which is much higher than others.  相似文献   

6.
Molecularly imprinted polymer beads of bovine serum albumin (BSA) were prepared via inverse phase suspension polymerization, using BSA as the template molecule, a combination of acrylamide and methacrylic acid (MAA) as double functional monomers, and N, N′‐methylene bisacrylamide as the crosslinker. The effect of different monomer ratios and degrees of crosslinking were investigated. When both selectivity and physical properties of the resultant polymer beads were taken into account, the ratio of MAA in the total monomers was chosen at 40% (m/m) and the degree of crosslinking at 30% (n/n), the resultant polymer beads had good selectivity (α = 2.77) and good physical properties. The effects of pH and temperature were studied. It turned out that the functionalization of polymers of BSA prepared via inverse‐phase suspension polymerization exhibited specific recognition for BSA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Random cationic copolymer brushes composed of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and N-isopropylacrylamide (NIPAAm) were synthesized using the atom transfer radical polymerization (ATRP) method. The effects of varying the monomer feed ratios (30:70 and 70:30 DMAEMA:NIPAAm) and polymerization times on the film height, morphology and stimuli response to pH of the brush were evaluated. While the polymerization time was found to have little influence on the properties of the brushes, the monomer feed ratios had a great impact. The 70% DMAEMA polymer brush had similar height as the 30% DMAEMA brush after 45 min; however, it had a greater response to pH and morphological change compared to the 30% DMAEMA. The 70% DMAEMA brush was used to demonstrate an efficient approach to alleviate the ion suppression effect in MALDI analysis of complex mixtures by effectively fractionating a binary mixture of peptides prior to MALDI-MS analysis.  相似文献   

8.
Adsorption of bovine serum albumin (BSA) on CoCrMo surface was studied by electrochemical techniques in order to determine the mechanism of protein adsorption at different surface conditions (which are reached by considering different passivation times) in phosphate buffered solution (PBS). At open circuit potential (OCP), adsorption kinetic was influenced by surface passivation when passivation time was lower than 1 h, whereas, at higher passivation times, no apparent modification in the kinetic mechanisms of adsorption was observed. On the other hand, at a passive applied potential, the BSA addition decreased the passivation kinetics of the process at all the passivation times.  相似文献   

9.
原子转移自由基聚合(ATRP)是近十几年来发展起来的高效可控/活性聚合新技术。ATRP技术自1995年发现后,将金属催化剂与配位基结合可以控制结构,获得窄分子质量分布。通过ATRP技术在膜表面和膜材料上接枝或嵌段亲水高聚物来制备抗污染、抗菌超滤膜,包括用于生物分离色谱的高效离子交换膜。由于ATRP随反应时间、反应单体和引发剂浓度可以线性控制接枝或嵌段链密度和长度,这使亲水性材料稳定的键合在疏水膜材料上,也有效调控了基膜的孔尺寸和分布,使膜的分离性能有所提高和改善。ATRP技术已成为设计和合成优良新型材料和膜的基础手段。  相似文献   

10.
将含有双键的甲基丙烯酸-2-氨基乙酯化学锚接在交联聚甲基丙烯酸甲酯微球表面,然后用过氧化苯甲酰引发苯乙烯发生氮氧调控自由基原位接枝聚合反应,将聚苯乙烯接枝在交联聚甲基丙烯酸甲酯微球表面,制备了PS刷子层.用凝胶渗透色谱和红外光谱对所合成交联聚苯乙烯接枝聚甲基丙烯酸乙酯共聚物进行了表征,实验结果显示:在2,2,6,6-四甲基哌啶-1-氧自由基存在下,苯乙烯的聚合反应为"活性"自由基聚合,所得到的聚苯乙烯分子量分布在1.13~1.28范围,分子量随聚合时间的延长而增大(7 000~68 000 g/mol).接枝聚合物红外光谱显示聚苯乙烯被接枝到了交联聚甲基丙烯酸甲酯微球表面.AFM 表征显示交联聚甲基丙烯酸甲酯微球尺寸在0.3~1.6 μm 范围.  相似文献   

11.
A combination of coordination polymerization and atom transfer radical polymerization (ATRP) was applied to a novel synthesis of rod–brush block copolymers. The procedure included the following steps: (1) the monoesterification reaction of ethylene glycol with 2-bromoisobutyryl bromide (BIBB) yielded the bifunctional initiator monobromobutyryloxy ethylene glycol and (2) a trichlorocyclopentadienyl titanium (CpTiCl3; bifunctional initiator) catalyst was prepared from a mixture of CpTiCl3 and bifunctional initiator. The coordination polymerization of n-butyl isocyanate initiated by such a catalyst provided a well-defined macroinitiator, poly(n-butyl isocyanate)–bromine (PBIC–Br). (3) The ATRP method of 2-hydroxyethyl methacrylate initiated by PBIC–Br provided rod [poly(n-butyl isocyanate) (PBIC)]–coil [poly(2-hydroxyethyl methacrylate) (PHEMA)] block copolymers with a CuCl/CuCl2/2,2′-bipyridyl catalyst. (4) The esterfication of PBIC-block-PHEMA with BIBB yielded a block-type macroinitiator, and (5) ATRP of methyl methacrylate with a block-type macroinitiator provided rod–brush block copolymers. We found from the solution properties that such rod–brush block copolymers formed nanostructured macromolecules in solution. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Thermosensitive polymer hydrogel particles with size varying from 480 to 620 nm were prepared through precipitation copolymerization of N-isopropylacrylamide with N,N′-methylenebisacrylamide (MBA) in water with ammonium persulfate as the initiator. Only polymer hydrogels without any coagula were obtained when MBA concentration in the monomer mixture was kept between 2.5 and 10.0 wt%; with increased MBA concentration, the monomer conversion was enhanced, the size of the hydrogels was increased, and their shrinking was lessened when heated from 25°C to 40°C. Bovine serum albumin adsorption on the surface of the hydrogels of different MBA content was measured at different pH levels and under different temperatures. The results demonstrated that the adsorption of the protein on the hydrogels could be controlled by adjusting the pH, the temperature of adsorption, and the crosslinking in the hydrogels. The results were interpreted, and the mechanisms of the polymerization were proposed.  相似文献   

13.
H ZhangZ Yu  X WanQ.-F Zhou  E.M Woo 《Polymer》2002,43(8):2357-2361
The synthesis of poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene} (PMPCS) with different molecular weight and low polydispersity was achieved by atom transfer radical polymerization in methoxybenzene solution using 1-bromoethylbenzene as an initiator and CuBr/sparteine complex as a catalyst. The concentration of the living centers throughout the polymerization was found to be constant. The liquid-crystalline behavior of the polymers with Mn ranging from 3800 to 17,400 g/mol was studied using DSC and POM. Only the polymers with Mn beyond 10,200 g/mol formed a liquid-crystalline phase, which was quite stable with a high clearing point (higher than the decomposition temperature of the polymer).  相似文献   

14.
Ni0.5Zn0.5Fe2O4 nanoparticles were synthesized by the facile citrate-gel process and the preliminary measurement for adsorption of bovine serum albumin (BSA) protein on these nanoparticles was carried out. The gel precursor and resultant nanoparticles were characterized by TG-DSC, FTIR, XRD, TEM and VSM techniques and the BSA adsorption on the nanoparticles was analyzed by UV spectrophotometer at room temperature. The results show that the single phase of spinel Ni0.5Zn0.5Fe2O4 is formed at 400 °C. With increasing calcination temperature from 400 to 700 °C, the average grain size increases from about 14 to 45 nm and consequently, the specific saturation magnetization of Ni0.5Zn0.5Fe2O4 nanoparticles increases from about 46 to 68 Am2/kg. The coercivity initially increases and then decreases with increasing calcination temperature, with a maximum value 9.2 kA/m at 500 °C. The as-prepared Ni0.5Zn0.5Fe2O4 nanoparticles exhibit a good adsorbing ability for BSA and the optimized adsorption is achieved for the Ni0.5Zn0.5Fe2O4 nanoparticles calcined at 500 °C with grain size about 24 nm.  相似文献   

15.
Alternate N-vinyl pyrrolidone/maleic anhydride (NVPMA) copolymers were obtained by radical solution polymerization in dioxane with various MA contents in the monomer feed. The conversion of each monomer was monitored by proton nuclear magnetic resonance spectroscopy (1H NMR), and the kinetics investigation showed that both monomers had identical polymerization rates if both monomers were present in the reaction mixture. The presence of excess NVP in the polymerization medium increased the kinetics of the polymerization and the molar masses of the resulting polymers. This increase was attributed to a cosolvent effect due to NVP, which is a better solvent for the polymer than dioxane. The hydrolysis rate constant of the polymers increased with pH, and NVPMA copolymers were more prone to hydrolysis (by a factor 10) than the methyl vinyl ether ones. Finally, the immobilization of bovin serum albumin (BSA) was investigated. A 25 mM phosphate buffer (pH 5.5) was the best medium to covalently bind 5 BSA molecules onto a 29 kDa NVPMA copolymer and 13 BSA molecules onto a 58 kDa sample, with grafting efficiencies > 90%. Noncovalent interactions with the hydrolyzed form of the polymer and BSA occured at pHs lower than the isoelectric point of BSA, and the resulting complexes were insoluble in water. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3327–3337, 2001  相似文献   

16.
The binding of fluorescein sodium salt with three kinds of commercially available bovine serum albumin (BSA) of different grades of purity was investigated at 288, 298 and 313 K by fluorescence and absorption measurements at pH 7.50. The association and dissociation constants Ka and Kd were determined by the quenching of BSA fluorescence in the presence of fluorescein sodium salt. The best results were obtained by fitting raw data by non-linear regression and Lineweaver–Burk equations. The modified Stern–Volmer and Scatchard plots gave less reliable data since the fitting was much more difficult.The agreement of the constants for the three sets of measurements coming from the different BSA was not as good as expected. BSA binding properties differ depending on the different BSA grades of purity. Actually, the binding constants found for the three BSAs used differed in the same set of interactions, even by keeping the experimental conditions constant. These results are a novelty in the field of BSA–ligand binding studies and should be taken into account for future binding studies using BSA. Actually, a large number of aspects should be considered including the grade of purity and the presence of BSA covalent and non-covalent dimers, trimers and oligomers in solution which can affect the goodness of the binding results.  相似文献   

17.
Reverse atom transfer radical polymerization (ATRP) of n‐butyl methacrylate (BMA) in waterborne media using Cu(II) complexes with azo initiators (i.e., reverse ATRP) was conducted. The influence of several factors, such as surfactant, catalyst, and reaction time, on the stability of the emulsion, the particle size, the morphology of the emulsion particles, and the control of the polymerization was investigated. The results showed great differences between ATRP and conventional emulsion polymerization, especially the nucleation mechanism and the kinetics. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1542–1547, 2003  相似文献   

18.
An in‐depth study was carried out on the structure and properties of a series of poly(ethyl acrylate)/clay nanocomposites prepared by in situ atom transfer radical polymerization (PNCIs) with well‐defined molecular weights and narrow molecular weight distributions. Wide‐angle X‐ray diffraction and transmission electron microscopy studies revealed an exfoliated clay morphology, whereas conventional solution blending generated an intercalated structure. The storage moduli of the PNCIs showed a moderate increase over that of the neat polymer [poly(ethyl acrylate)]. The sample containing 4 wt % clay (PNCI4, where the number following PNCI indicates the weight percentage of clay) exhibited the highest improvement (31.9% at 25°C). In PNCIs, the β‐transition temperature showed a remarkable decrease (by 175% in PNCI4) along with a shift toward higher temperatures. This indicated the probability of the anchoring of the ? OH group of the clay layers to the >C?O group of the pendant acrylate moiety, which was also confirmed by Fourier transform infrared analysis. Rheological measurements indicated a significant increase in the shear viscosity [by 9% in PNCI2, 15% in PNCI4, and 6% in the poly(ethyl acrylate)/clay nanocomposite with 2 wt % clay prepared by solution blending]. The PNCIs registered enhanced thermal stability, as indicated by the shift in the peak maximum temperature (388 and 392°C for the neat polymer and PNCI4, respectively) and a decrease in the rate of degradation (by 3.5% in PNCI2, 10.2% in PNCI4, and 49.3% in PNCI6). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Radical polymerization of N-isopropylacrylamide (NIPAAm) was examined in the presence of hexamethylphosphoramide (HMPA). The addition of an excess amount of HMPA induced syndiotactic-specificity that gradually enhanced as the feed monomer was consumed. The syndiotacticity of the obtained poly(NIPAAm)s was improved by increasing the [HMPA]0/[NIPAAm]0 ratio to five and prolonging the polymerization time to 96 h (racemo=72%). It was also revealed that more stereoregulated poly(NIPAAm) could be fractionated by reprecipitating the resulting polymers from hexane-THF mixture. This result suggested that more stereoregulated poly(NIPAAm) showed a lower solubility than less stereoregulated poly(NIPAAm)s. Furthermore, unusual hysteresis was observed in transmittance analysis of an aqueous solution of the fractionated syndiotactic poly(NIPAAm).  相似文献   

20.
采用原子转移自由基聚合(ATRP)和分步方法,制备了以苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)为聚合物Ⅰ,聚(苯乙烯-甲基丙烯酸甲酯)[P(St—MMA)]为聚合物Ⅱ的SBS/P(St—MMA)热塑性互穿聚合物网络(TIPN)。研究了P(St—MMA)质量分数、MMA/St(摩尔比)和不同聚合方式对TIPN动态力学性能和黏结性能的影响。结果表明,采用ATRP法制备的TIPN的动态力学性能和黏结性能均优于常规自由基聚合制备的TIPN。高温区聚苯乙烯(PSt)嵌段的玻璃化转变温度明显降低,而损耗角正切tanδ2显著增加;TIPN的黏结性能也得到明显改善,拉伸剪切强度提高了3倍多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号