共查询到10条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
为解决弱稀疏语音信号的欠定盲分离问题,根据语音信号的部分W-分离正交性,提出一种基于单源主导区间的混合矩阵盲估计方法。该方法根据单源主导区间的性质,通过二元行矢量提取单源观测样本,对单源观测样本进行K均值聚类和主成分分析来估计混合矩阵。仿真结果表明,提出的方法可有效提高分离语音的性能,与直接利用K-PCA方法相比,分离语音的平均信噪比提高了10 dB左右。 相似文献
5.
噪声环境下的病态混叠信号具有较强的空间复共线性,因此基于聚类的稀疏分量分析(SCA)方法难以在欠定条件下对其进行有效的分离。针对这一问题,该文首先建立了噪声环境下病态混叠信号欠定盲源分离问题的数学模型,分析了基于线性聚类的SCA方法在解决该问题时的局限性,提出了一种基于SCA和非正交联合对角化(NJD)的分离算法,该方法利用NJD不要求混叠矩阵为酉矩阵的特性,较好地解决了欠定盲源分离中的病态混叠问题。仿真实验表明,该方法在信号分离效果、噪声鲁棒性以及病态混叠鲁棒性上都明显优于基于启发式聚类粒子群优化的(CGPSO)的SCA方法。 相似文献
6.
稀疏分量分析在欠定盲源分离问题中的研究进展及应用 总被引:3,自引:0,他引:3
伴随着国内外对盲源分离问题研究的日益深入,在独立分量分析等经典算法之外逐步发展出了许多新的算法.稀疏分量分析就是其中有效的方法之一,它利用信号的稀疏分解,克服了独立分量分析非欠定性的要求,解决了欠定情况下的盲源分离问题.本文将以稀疏分量分析为主要对象,归纳总结了近期的研究进展. 相似文献
7.
该文利用欠定盲分离下稀疏源信号的特点,估计源信号的数目且恢复源信号。通常在用两步法来解决欠定盲分离时,首先利用K-均值算法对观测信号聚类估计出混叠矩阵,最后利用最短路径法来恢复源信号,但是在以往的算法中,第1步估计混叠矩阵时,通常假设源信号数目是已知的,从而进行K-均值聚类,而事实上源信号数目根本无法知道,因此对源信号数目的估计对两步法有很重要的影响。因此本文提出了一种新的两步法算法,其中第1步利用稀疏源信号反映在观测信号中的特征来准确地估计出稀疏源信号的数目,且能得到混叠矩阵,从而恢复源信号。最后的仿真结果,以及与通常的K-均值聚类算法对比的仿真结果说明了此算法的可行性和优异的性能。 相似文献
8.
现有的欠定语音信号盲分离算法往往不能同时兼顾分离性能及效率。针对此问题,本文提出一种基于谐波提取的欠定盲分离方法。首先,利用频谱校正从混合信号的短时傅立叶变换中提取谐波参数,其次利用相位一致性准则甄别这些参数的单源属性,进而用自适应K-均值方法对单源模式做聚类而获得源数估计和混合矩阵估计,最后再用子空间投影法恢复源信号。其中谐波提取和单源参数筛选可保证低复杂度地精确估计出混合矩阵。仿真实验表明,相比于原始子空间投影算法,本文方法可获得更高的信号恢复质量,且在谐波相关领域也具有潜在应用价值。 相似文献
9.
基于欠定盲分离的多目标微多普勒特征提取 总被引:1,自引:0,他引:1
连续波雷达多目标回波中多种微多普勒特征分离问题采用独立成分分析方法实现,该方法在使用中存在较大局限性,要求待分离的微多普勒特征之间必须是统计独立的,且仅局限于恰定和超定的方程组求解问题。然而,在多目标雷达观测场景下,雷达接收的混叠回波的个数通常少于目标的个数,各目标的微多普勒特征可能存在相关性。为此,提出了一种基于欠定盲分离的多目标回波微多普勒特征分离方法。该方法可以从少数原始混叠回波中分离出多个目标的微多普勒特征,对待分离的微多普勒特征限制性弱。通过数值仿真,证实了该方法的可行性。 相似文献
10.
该文针对源信号时域和频域不充分稀疏的情况,提出了欠定盲源分离中估计混合矩阵的一种新方法。该方法对等间隔分段的观测信号应用独立分量分析(ICA)的盲分离算法获得多个子混合矩阵,然后对其分选剔除了不属于原混合矩阵的元素,最后利用C均值聚类的学习算法获得对混合矩阵的精确估计,解决了源信号在时域和频域不充分稀疏的情况下准确估计混合矩阵的问题。在估计出混合矩阵的基础上,利用基于稀疏分解的统计量算法分离出源信号。由仿真结果,以及与传统的K均值聚类,时域检索平均算法对比的实验结果说明了该文算法的有效性和鲁棒性。 相似文献