共查询到20条相似文献,搜索用时 15 毫秒
1.
Propagation of Uncertainty in Cooperative Multirobot Localization: Analysis and Experimental Results 总被引:6,自引:0,他引:6
This paper examines the problem of cooperative localization for the case of large groups of mobile robots. A Kalman filter estimator is implemented and tested for this purpose. The focus of this paper is to examine the effect on localization accuracy of the number N of participating robots and the accuracy of the sensors employed. More specifically, we investigate the improvement in localization accuracy per additional robot as the size of the team increases. Furthermore, we provide an analytical expression for the upper bound on the positioning uncertainty increase rate for a team of N robots as a function of N, the odometric and orientation uncertainty for the robots, and the accuracy of a robot tracker measuring relative positions between pairs of robots. The analytical results derived in this paper are validated both in simulation and experimentally for different test cases. 相似文献
2.
多机器人协同定位需对各个机器人的运动模型和观测模型精确建模,需要运用非线性、非高斯系统。已经应用于本领域的各种非线性算法主要有两种:一种是扩展卡尔曼滤波算法(EKF),它对非线性系统进行局部线性化,从而间接利用卡尔曼算法进行滤波与估算;另一种是序列蒙特卡罗算法,即粒子滤波器(PF)。本文介绍了一种改进的粒子滤波
器,即高斯-施密特粒子滤波器(GHPF),重点比较这三种算法在多机器人协同定位领域的应用效果。 相似文献
器,即高斯-施密特粒子滤波器(GHPF),重点比较这三种算法在多机器人协同定位领域的应用效果。 相似文献
3.
4.
5.
移动机器人基于激光测距和单目视觉的室内同时定位和地图构建 总被引:16,自引:1,他引:16
该文研究了部分结构化室内环境中自主移动机器人同时定位和地图构建问题.基于激光和视觉传感器模型的不同,加权最小二乘拟合方法和非局部最大抑制算法被分别用于提取二维水平环境特征和垂直物体边缘.为完成移动机器人在缺少先验地图支持的室内环境中的自主导航任务,该文提出了同时进行扩展卡尔曼滤波定位和构建具有不确定性描述的二维几何地图的具体方法.通过对于SmartROB-2移动机器人平台所获得的实验结果和数据的分析讨论,论证了所提出方法的有效性和实用性. 相似文献
6.
蔡炯 《计算机测量与控制》2015,23(5):1639-1642
针对多机器人的定位与建图受到即时定位与地图构建(SLAM)研究方法和技术不成熟的制约问题,提出一种基于扩展卡尔曼滤波(EKF)的自适应同时定位与建图方法;首先,基于EKF估计方法,将SLAM中机器人运动方式的选取问题转化为一个多目标最优控制问题,机器人选取最优化目标函数的控制输入,从而以主动的、智能的和自适应的方式探索环境;然后,将上述方法推广到多机器人SLAM中,以实现更为准确、高效和鲁棒的定位与建图;仿真结果表明,该方法大大提高了机器人建图的效率、准确性和鲁棒性;该方法用于机器人主动同时定位和建图是可行的、有效的. 相似文献
7.
8.
This paper studies the localization problem of autonomous underwater vehicles (AUVs) constrained by limited size, power and payload. Such AUVs cannot be equipped with heavy sensors which makes their underwater localization problem difficult. The proposed cooperative localization algorithm is performed by using a single surface mobile beacon which provides range measurement to bound the localization error. The main contribution of this paper is twofold: 1) The observability of single beacon based localization is first analyzed in the context of nonlinear discrete time system, deriving a sufficient condition on observability. It is further compared with observability of linearized system to verify that a nonlinear state estimation is necessary. 2) Moving horizon estimation is integrated with extended Kalman filter (EKF) for three dimensional localization using single beacon, which can alleviate the computational complexity, impose various constraints and make use of several previous range measurements for each estimation. The observability and improved localization accuracy of the localization algorithm are verified by extensive numerical simulation compared with EKF. 相似文献
9.
在不使用几何参数描述大规模环境的前提下, 提出了基于分治法的同步定位与环境采样地图创建 (Simultaneous localization and sampled environment mapping, SLASEM)算法来同时进行定位与地图创建. 该算法采用环境采样地图(Sampled environment map, SEM)描述环境, 使算法不局限于用几何参数描述的规则环境. 同时该算法实时地创建局部地图, 并基于分治法合并局部地图, 保证了算法的实时性. 在合并两个子地图时, 算法首先从环境采样地图中提取出角点, 利用角点约束初步更新子地图; 然后利用符号正交距离函数作为虚拟测量函数, 再次细微地更新子地图; 最后将两个子地图合并到一个大地图, 约简冗余的环境采样粒子, 以提高地图的紧凑性. 两个实验的结果验证了所提算法的有效性和实时性. 相似文献
10.
自适应扩展卡尔曼滤波器在移动机器人定位中的应用 总被引:1,自引:0,他引:1
针对移动机器人定位过程中存在的误差积累问题,提出了采用自适应扩展卡尔曼滤波算法(AEKF).分析了扩展卡尔曼滤波(EKF)和AEKF两种算法, AEKF取采样时刻的各项泰勒级数,并利用Sage-Husa时变噪声估计器实时估计观测噪声,克服了线性化误差,增强了环境适应性;同时,对AEKF的收敛性及运算复杂度进行分析,并结合算法实验表明AEKF具有良好的速度精度综合性价比;最后对比分析两种算法实现机器人定位的效果并实验完成误差对比.结果表明AEKF具有更优的定位性能. 相似文献
11.
融合无人水下航行器(UUV)内部航位递推估计和外部量测信息的协同定位方法是一种提高只配备低精度自定位装置的UUV定位精度的有效手段。当协同系统结构固定时,滤波器的选择就决定了精度提高的幅度。针对扩展卡尔曼滤波(EKF)在处理非线性系统时具有较大的截断误差和繁琐的计算,提出了使用sigma点卡尔曼滤波(SPKF)的协同定位方法。与EKF相比,无味卡尔曼滤波(UKF)和中心差分卡尔曼滤波(CDKF)具有更好的鲁棒性,在没有增加计算复杂度的基础上进一步提高了UUV的定位精度。仿真比较了采用不同滤波算法的协同定位方法提高定位精度的效果,验证了利用sigma点卡尔曼滤波的多UUV协同定位方法的有效性和一致性。 相似文献
12.
13.
移动机器人同步定位与地图构建研究进展 总被引:3,自引:0,他引:3
同步定位与地图构建(Simultaneous localization and mapping, SLAM)作为能使移动机器人实现全自主导航的工具近来倍受关注.本文对该领域的最新进展进行综述,特别侧重于一些旨在降低计算复杂度的简化算法的分析上,同时对它们进行分类,并指出其优点和不足.本文首先建立了SLAM问题的一般模型,指出了解决SLAM问题的难点;然后详细分析了基于EKF的一些简化算法和基于其他估计思想的方法;最后,对于多机器人SLAM和主动SLAM等前沿课题进行了讨论,并指出了今后的研究方向. 相似文献
14.
传统的单目视觉同步定位与地图创建(MonoSLAM)方法很难处理累积误差问题,如何有效地利用惯性传感器输出的运动信息辅助SLAM系统抑制累积误差是MonoSLAM研究中的一项重要内容.由于惯性传感器输出的三轴方向角中横滚角和俯仰角的精度较高,而偏航角的精度相对较低,如果在SLAM系统中直接使用惯性传感器输出的偏航角信息不但无法有效地抑制该系统中的累积误差,反而会进一步增大系统误差、降低SLAM系统的稳定性.针对这种情况,提出一种基于惯性传感器横滚角和俯仰角的MonoSLAM方法.首先利用惯性传感器输出的横滚角和俯仰角进行系统标定;然后将惯性传感器自身的偏航角作为系统状态向量的一个分量,利用扩展卡尔曼滤波器实时地估计状态向量,进而实现实时鲁棒的同步定位和地图创建.实验结果表明,该方法可以有效地抑制SLAM系统运行过程中产生的累积误差,并降低惯性传感器测量误差对SLAM系统稳定性的影响. 相似文献
15.
16.
鉴于尺度不变特征转换(SIFT)匹配算法存在计算效率不高且容易出现误匹配的问题,针对视觉同步定位与地图重建,提出了一种基于先验信息的SIFT匹配算法.该算法首先根据机器人和特征点的相对距离变化来预测尺度空间的变化;然后根据机器人和特征点的当前状态来预测特征点的图像位置;最后在预测的图像位置进行SIFT匹配.实验结果表明... 相似文献
17.
在移动长基线(MLBL)定位结构中,虽可利用基于水声传播延迟(TOF)原理获取的量测信息和贝叶斯滤波器(如扩展卡尔曼滤波(EKF))提高低自定位能力无人水下航行器(UUV)的定位精度,但较高的测量误差会降低这种提高的幅度.根据水声通信的特点提出了一种相关性假设并构建了误差修正算法(ECA),在设定条件下利用误差间的相关性减小量测误差,从而实现量测的粗估计.仿真结果表明,先粗估计量测值再结合贝叶斯滤波器,可显著提高配备低精度自定位传感器的UUV的定位精度. 相似文献
18.
基于粒子滤波和点线相合的未知环境地图构建方法 总被引:1,自引:0,他引:1
针对粒子滤波处理未知环境地图构建时存在存储空间负荷高、计算量大的问题, 本文使用线段特征描述环境信息, 将点线相合的增量式地图构建方法引入粒子滤波中. 在每个粒子中保存对已构建线段特征地图的假设; 使用点线相合的位姿估计算法将观测信息引入重要性函数, 确定采样空间; 通过观测信息与已构建线段特征地图之间的相合关系更新粒子权重; 最后通过选择性重采样去除因匹配不当和误差积累产生的错误地图. 分析表明, 该算法的复杂度较低. 在真实传感器数据上的实验结果验证了该算法构建室内环境地图的有效性和鲁棒性. 算法所需存储空间和粒子数远小于现有粒子滤波地图构建方法. 相似文献
19.
针对里程计在定位过程中存在累积误差的问题,建立了一种通用的移动机器人里程计误差模型,对里程计误差进行实时反馈补偿.在利用激光雷达进行环境特征提取过程中,根据激光雷达原始数据存在的误差,建立了激光雷达的观测误差模型,并根据环境特征和机器人的相对位置关系,建立了移动机器人观测模型.最后,结合里程计和激光雷达误差模型,利用扩展卡尔曼滤波(EKF)实现了基于环境特征跟踪的移动机器人定位.实验结果验证了里程计和激光雷达误差模型的引入,在增加较短定位时间的情况下,可以有效地提高移动机器人的定位精度. 相似文献
20.
室内移动机器人的视觉定位方法研究 总被引:6,自引:1,他引:6
针对地图未知的室内环境下的定位问题,提出了一种基于特征跟踪的视觉里程计方法.利用单目摄像头提取和跟踪环境特征点集,进而根据观测模型利用扩展卡尔曼滤波算法估算出机器人的位姿.办公室环境中的定位实验证明了方法的有效性. 相似文献