首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H. Lund  E. Münster 《Renewable Energy》2003,28(14):2179-2193
This paper presents the energy system analysis model EnergyPLAN, which has been used to analyse the integration of large scale wind power into the national Danish electricity system. The main purpose of the EnergyPLAN model is to design suitable national energy planning strategies by analysing the consequences of different national energy investments. The model emphasises the analysis of different regulation strategies and different market economic optimisation strategies.At present wind power supply 15% of the Danish electricity demand and ca 50% is produced in CHP (combined heat and power production). The model has been used in the work of an expert group conducted by the Danish Energy Agency for the Danish Parliament. Results are included in the paper in terms of strategies, in order to manage the integration of CHP and wind power in the future Danish energy supply in which more than 40% of the supply is expected to come from wind power.  相似文献   

2.
Significant benefits are connected with an increase in the flexibility of the Danish energy system. On the one hand, it is possible to benefit from trading electricity with neighbouring countries, and on the other, Denmark will be able to make better use of wind power and other types of renewable energy in the future. This paper presents the analysis of different ways of increasing flexibility in the Danish energy system by the use of local regulation mechanisms. This strategy is compared with the opposite extreme, i.e. trying to solve all balancing problems via electricity trade on the international market. The conclusion is that it is feasible for the Danish society to include the CHP plants in the balancing of fluctuating wind power. There are major advantages in equipping small CHP plants as well as the large CHP plants with heat pumps. By doing so, it will be possible to increase the share of wind power from the present 20 to 40% without causing significant problems of imbalance between electricity consumption and production. Investment in increased flexibility is in itself profitable. Furthermore, the feasibility of wind power is improved.  相似文献   

3.
Denmark has the World’s highest penetration of grid connected wind power in electricity generation with a share of 15.0% of total domestic demand in 2002 [Danish Energy Authority. Rapport fra arbejdsgruppen om kraftvarme- og VE-elektricitet. Bilagsrapport. Copenhagen: Danish Energy Authority; 2001]. This is unevenly distributed in the two separate electricity systems comprising Denmark, giving a 2003 share as high as 21% in Western Denmark [Eltra. http://www.Eltra.dk. Skærbæk: Eltra; 2004] compared with a more modest 8% in the more densely populated Eastern Denmark [Elkraft System. Miljøberetning 2004. Ballerup: Elkraft System; 2004]. At the same time, Denmark has other forms of distributed generation, e.g., extensive cogeneration of heat and power (CHP) plants for district heating or for covering industrial heat demands. This results in a high fuel-efficiency but also in a technically complex energy system. This combination of wind power and CHP is a challenge for system operators but also gives opportunities. This article analyses the possibilities for integrating even more wind power using new power balancing strategies that exploit the possibilities given by the existence of CHP plants as well as the potential impact of heat pumps used for district heating and installed for integration purposes. The analyses are made with particular focus on grid stability and delivery of ancillary services (required to control voltage and frequency) and demonstrate that it is possible to accommodate 50% or more wind power without having to rely on import or export for power balancing. Relying on import and export sets demands on the neighbouring countries which may not be met. Compulsion to export or import furthermore gives a poor bargaining position on the electricity market. However, in order to reach such high levels of wind power, the generating equipment must be able to supply ancillary services in contrast to their present abilities.  相似文献   

4.
《Energy》2002,27(5):471-483
Both CHP (combined heat and power production) and wind power are important elements of Danish energy policy. Today, approximately 50% of both the Danish electricity and heat demand are produced in CHP and more than 15% of the electricity demand is produced by wind turbines. Both technologies are essential for the implementation of Danish climate change response objectives, and both technologies are intended for further expansion in the coming decade. Meanwhile, the integration of CHP and wind power is subject to fluctuations in electricity production. Wind turbines depend on the wind, and CHP depends on the heat demand. This article discusses and analyses two different national strategies for solving this problem. One strategy, which is the current official government policy known as the export strategy, proposes to take advantage of the Nordic and European markets for selling and buying electricity. In this case, surplus electricity from wind power and CHP simply will be sold to neighbouring countries. Another strategy, the self-supply strategy, runs the CHP units to meet both demand and the fluctuations in the wind scheduling. In this case, investments in heat storages are necessary and heat pumps have to be added to the CHP units. Based on official Danish energy policy and energy plans, this article quantifies the problem for the year 2015 in terms of the amount of surplus electricity, and investments in heat pumps, etc. needed to solve the problem are calculated. Based on these results between the two different strategies, the conclusion is that the self-supply strategy is recommended over the official export strategy.  相似文献   

5.
With 20 centralised plants and over 35 farmscale plants, the digestion of manure and organic waste is a well established technological practice in Denmark. These plants did not emerge without a struggle. Moreover, no new centralised plants have been established since 1998 and the development of farmscale plants has slowed down. This article reviews the experimental introduction of biogas plants in Denmark since the 1970s. We argue that three factors have been important for the current status of biogas plants in Denmark. First, the Danish government applied a bottom-up strategy and stimulated interaction and learning between various social groups. Second, a dedicated social network and a long-term stimulation enabled a continuous development of biogas plants without interruptions until the late 1990s. Third, specific Danish circumstances have been beneficial, including policies for decentralised CHP, the existence of district heating systems, the implementation of energy taxes in the late 1980s and the preference of Danish farmers to cooperate in small communities. The current setback in biogas plants is mainly caused by a shift in energy and environmental policies and limited availability of organic waste.  相似文献   

6.
This paper investigates whether and how Danish-style combined heat and power (CHP) and district heating (DH) can be implemented in the UK in the context of a liberalised electricity market. There is currently an absence, in the UK, of the Danish system of planning rules and also good tariffs for CHP electricity exports to the grid that led to the development of the Danish system of CHP and DH. However, there are some changes in UK planning practice that may help CHP and DH. These would need to be strengthened, but it is also the case that the way the liberalised electricity market operates in the UK effectively discriminates against small CHP plant selling their electricity to the grid. A Danish system of ‘aggregating’ CHP–DH plant using thermal stores could help to overcome this problem. However, an alternative strategy would be to establish feed-in tariffs for CHP units that are linked to DH modelled on the Danish ‘triple tariff’. This could help the UK's long-term objective of absorbing high levels of fluctuating renewable energy sources.  相似文献   

7.
Combined heat and power (CHP) plants fired by forest wood can significantly contribute to attaining the target of increasing the share of renewable energy production. However, the spatial distribution of biomass supply and of heat demand limits the potentials of CHP production. This article assesses CHP potentials using a mixed integer programming model that optimizes locations of bioenergy plants. Investment costs of district heating infrastructure are modeled as a function of heat demand densities, which can differ substantially. Gasification of biomass in a combined cycle process is assumed as production technology. Some model parameters have a broad range according to a literature review. Monte‐Carlo simulations have therefore been performed to account for model parameter uncertainty in our analysis. The model is applied to assess CHP potentials in Austria. Optimal locations of plants are clustered around big cities in the east of the country. At current power prices, biomass‐based CHP production allows producing around 3% of the total energy demand in Austria. Yet, the heat utilization decreases when CHP production increases due to limited heat demand that is suitable for district heating. Production potentials are most sensitive to biomass costs and power prices. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
High efficiency thermoelectric generators (TEG) can recover waste heat from both industrial and private sectors. Thus, the development and deployment of TEG may represent one of the main drives for technological change and fuel substitution. This paper will present an analysis of system efficiency related to the integration of TEG into thermal energy systems, especially Combined Heat and Power production (CHP). Representative implementations of installing TEG in CHP plants to utilize waste heat, wherein electricity can be generated in situ as a by-product, will be described to show advantageous configurations for combustion systems. The feasible deployment of TEG in various CHP plants will be examined in terms of heat source temperature range, influences on CHP power specification and thermal environment, as well as potential benefits. The overall conversion efficiency improvements and economic benefits, together with the environmental impact of this deployment, will then be estimated. By using the Danish thermal energy system as a paradigm, this paper will consider the TEG application to district heating systems and power plants through the EnergyPLAN model, which has been created to design suitable energy strategies for the integration of electricity production into the overall energy system.  相似文献   

9.
J.M. Pearce   《Energy》2009,34(11):1947-1954
The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five.  相似文献   

10.
With recent initiatives from the UK government on reduced energy use, energy efficient systems such as combined heat and power (CHP) have been considered for new applications, including supermarkets. In these commercial buildings, the seasonal demand for heat results in underutilisation of the CHP equipment, limiting the primary energy savings that may be achieved. To increase the utilisation time, it has been proposed that heat generated by the CHP unit could be used to power an absorption refrigeration system providing cooling for the refrigerated cabinets. The application of an integrated CHP/absorption scheme or combined cooling heat and power (CCHP) in the supermarket is the subject of this paper.The paper initially describes the cooling/heating/power requirements of a typical supermarket and then reviews a number of CCHP options involving the use of different cooling and engine technologies. The investigation calculates and compares the energy savings/capital costs of the different options against typical conventional supermarket technology.  相似文献   

11.
《Energy》2005,30(13):2402-2412
The paper presents the ability of different energy systems and regulation strategies to integrate wind power. The ability is expressed by the following three factors: the degree of electricity excess production caused by fluctuations in wind and Combined Heat and Power (CHP) heat demands, the ability to utilise wind power to reduce CO2 emission in the system, and the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system, in which 50% of the electricity demand is produced in CHP, a number of future energy systems with CO2 reduction potentials are analysed, i.e. systems with more CHP, systems using electricity for transportation (battery or hydrogen vehicles) and systems with fuel-cell technologies. For the present and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and ancillary grid stability services and investments in electric heating, heat pumps and heat storage capacity. The results of the analyses make it possible to compare short-term and long-term potentials of different strategies of large-scale integration of wind power.  相似文献   

12.
This study aims to identify and evaluate the biomass utilization options and evaluate the sustainable biomass production for combined heat and power (CHP) in Turkey. The total biomass energy potential of Turkey is about 32 Mtoe. The amount of usable biomass potential of Turkey is approximately 17 Mtoe. Among the biomass energy sources, fuel wood seems to be one of the most interesting because its share of the total energy production of Turkey is high at 21%. The use of biofuels for CHP on a large scale is focused mainly on forest industry sites, where considerable quantities of biomass are available. Biomass available for energy can be converted to different types of final energy (e.g., electricity, heat), of these, the production of electricity appears to be particularly important. While CHP provides several environmental benefits by making use of waste heat and waste products, air pollution is a concern any time fossil fuels or biomass are burned.  相似文献   

13.
Combined heat and power (CHP) has been identified by the EU administration as an important means of reducing CO2-emissions and increasing the energy efficiency. In Sweden, only about one third of the demand for district heat (DH) is supplied from CHP. This share could be significantly larger if the profitability of CHP generation increased. The objective of this study was to analyse the extent to which the profitability for investments in new CHP plants in the Swedish DH sector have changed thanks to the recently implemented trading schemes for green certificates (TGCs) and CO2 emissions (TEPs). The analysis was carried out using a simulation model of the Swedish DH sector in which the profitability of CHP investments for all DH systems, with and without the two trading schemes applied, is compared. In addition, a comparison was made of the changes in CHP generation, CO2 emissions, and operation costs if investments are made in the CHP plant shown to be most profitable in each system according to the model. The study shows that the profitability of investments in CHP plants increased significantly with the introductions of TGC and TEP schemes. If all DH utilities also undertook their most profitable CHP investments, the results indicate a major increase in power generation which, in turn, would reduce the CO2 emissions from the European power sector by up to 13 Mton/year, assuming that coal condensing power is displaced.  相似文献   

14.
《Applied Energy》1999,63(3):169-190
In recent years, it has become standard practice to consider Combined Heat-and-Power (CHP) systems for commercial buildings. CHP schemes are used, because they are an efficient means of power generation. Unlike conventional power stations, they produce electricity locally and thus minimise the distribution losses, however, they also utilise the waste heat from the generation process. In applications where there is a combined heating and electricity requirement, a very efficient means of energy production is achieved compared to the conventional methods of providing heating and electricity. With new initiatives from the UK government on reduced energy-use, energy-efficient systems such as CHP have been considered for new applications. This paper summarises the results of an investigation into the viability of CHP systems in supermarkets. The viability of conventional CHP has been theoretically investigated using a mathematical model of a typical supermarket. This has demonstrated that a conventional CHP system may be practically applied. It has also been shown that compared to the traditional supermarket design, the proposed CHP system will use slightly less primary energy and the running costs will be significantly reduced. An attractive payback period of approximately 4 years has been calculated. Despite these advantages a considerable quantity of heat is rejected to atmosphere with this system and this is because the configuration utilises the heat mainly for space heating which is only required for part of the year. To increase the utilisation time, a novel CHP/absorption system has been investigated. This configuration provides a continuous demand for the waste heat, which is used to drive an absorption chiller that refrigerates propylene glycol to −10°C for cooling the chilled-food cabinets. The results show this concept to be theoretically practical. The system has also been shown to be extremely efficient, with primary energy savings of approximately 20%, when compared to traditional supermarket designs and this would result in significant revenue cost savings as well as environmental benefits. Based upon these savings a payback period for this system of approximately 5 years has been demonstrated.  相似文献   

15.
An analysis of seven different technologies is presented. The technologies integrate fluctuating renewable energy sources (RES) such as wind power production into the electricity supply, and the Danish energy system is used as a case. Comprehensive hour-by-hour energy system analyses are conducted of a complete system meeting electricity, heat and transport demands, and including RES, power plants, and combined heat and power production (CHP) for district heating and transport technologies. In conclusion, the most fuel-efficient and least-cost technologies are identified through energy system and feasibility analyses. Large-scale heat pumps prove to be especially promising as they efficiently reduce the production of excess electricity. Flexible electricity demand and electric boilers are low-cost solutions, but their improvement of fuel efficiency is rather limited. Battery electric vehicles constitute the most promising transport integration technology compared with hydrogen fuel cell vehicles (HFCVs). The costs of integrating RES with electrolysers for HFCVs, CHP and micro fuel cell CHP are reduced significantly with more than 50% of RES.  相似文献   

16.
The potential for combined heat and power (CHP) generation in Stockholm is large and a total heat demand of about 10 TWh/year can be met in a renewed large district heating system. This model of the Stockholm district heating system shows that CHP generation can increase from 8% in 2004 to 15.5% of the total electricity generation in Sweden. Increased electricity costs in recent years have awakened an interest to invest in new electricity generation. Since renewable alternatives are favoured by green certificates, bio-fuelled CHP is most profitable at low electricity prices. Since heat demand in the district heating network sets the limit for possible electricity generation, a CHP alternative with a high electricity to heat ratio will be more profitable at when electricity prices are high. The efficient energy use in CHP has the potential to contribute to reductions in carbon dioxide emissions in Europe, when they are required and the European electricity market is working perfectly. The potential in Stockholm exceeds Sweden's undertakings under the Kyoto protocol and national reduction goals.  相似文献   

17.
《Applied Thermal Engineering》2000,20(12):1059-1073
In recent years, it has become standard practice to consider combined heat and power (CHP) systems early in the design stage of commercial buildings. With new initiatives from the UK government on reduced energy use, energy efficient systems such as CHP have been considered for a wider application particularly within industrial building design. The viability of CHP in a typical cold storage application is described in this paper. The electrical energy and heating requirements are defined and used to assess the annual energy consumption of a traditional cold storage design using a thermal model. The analysis is then used to consider the economics of different CHP configurations, which includes an integrated CHP and absorption system used to provide chilled glycol for the cold storage facilities. The additional capital cost of each configuration is shown and this is used to calculate the payback period. The results show that an attractive payback period of approximately four years for a combined CHP and absorption system may be achieved.  相似文献   

18.
In Sweden, over 50% of building heating requirements are covered by district heating. Approximately 8% of the heat supply to district heating systems comes from excess heat from industrial processes. Many studies indicate that there is a potential to substantially increase this share, and policies promoting energy efficiency and greenhouse gas emissions reduction provide incentives to do this. Quantifying the medium and long-term economic and carbon footprint benefits of such investments is difficult because the background energy system against which new investments should be assessed is also expected to undergo significant change as a result of the aforementioned policies. Furthermore, in many cases, the district heating system has already invested or is planning to invest in non-fossil heat sources such as biomass-fueled boilers or CHP units. This paper proposes a holistic methodological framework based on energy market scenarios for assessing the long-term carbon footprint and economic benefits of recovering excess heat from industrial processes for use in district heating systems. In many studies of industrial excess heat, it is assumed that all emissions from the process plant are allocated to the main products, and none to the excess heat. The proposed methodology makes a distinction between unavoidable excess heat and excess heat that could be avoided by increased heat recovery at the plant site, in which case it is assumed that a fraction of the plant emissions should be allocated to the exported heat. The methodology is illustrated through a case study of a chemical complex located approximately 50 km from the city of Gothenburg on the West coast of Sweden, from which substantial amounts of excess heat could be recovered and delivered to heat to the city's district heating network which aims to be completely fossil-free by 2030.  相似文献   

19.
This paper evaluates the economic, energetic, and environmental feasibility of using two power generation units (PGUs) to operate a combined heat and power (CHP) system. Several benchmark buildings developed by the Department of Energy simulated using the weather data for Chicago, IL, are used to analyze the proposed configuration. This location has been selected because it usually provides favorable CHP system conditions in terms of cost and emission reduction. For the proposed configuration, one PGU is operated at base load to satisfy part of the electricity building requirements, whereas the other is used to satisfy the remaining electricity requirement operating following the electric load. The dual‐PGU CHP configuration (D‐CHP) is modeled for four different scenarios to determine the optimum operating range for the selected benchmark buildings. The dual‐PGU scenario is compared with the reference building using conventional technology to determine the benefits of this proposed system in terms of operational cost, primary energy reduction, and carbon dioxide emissions. The D‐CHP system results are also compared with a CHP system operating following the electric load (FEL) and base‐loaded CHP system. For three of the selected buildings, the proposed D‐CHP system provides comparable or greater savings in operating cost, primary energy consumption, and carbon dioxide emissions than the optimized conditions for base loading and FEL. In addition, the effect of operating the D‐CHP system only during certain months of the year on the overall operational cost is also evaluated. Results indicate that not operating the D‐CHP system for the months where the thermal load is too low is beneficial for the overall system performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
M.B. Blarke  H. Lund 《Renewable Energy》2008,33(7):1499-1507
Across the world, energy planners and transmission system operators are faced with decisions on how to deal with challenges associated with high penetration levels of intermittent energy resources and combined heat and power (CHP). At the same time, distributed plant operators are eager to reduce uncertainties related to fuel and electricity price fluctuations. These interests meet-up for options in distributed supply that introduces the principle of storage and relocation, typically by integrating heat pumps (HP) or electric boilers (EBs) into the operational strategies of existing CHP plants. This paper introduces the principle of storage and relocation by energy system design, and proposes for the storage and relocation potential of a technology option to be found by comparing options by their storage and relocation coefficient Rc, defined as the statistical correlation between net electricity exchange between plant and grid, and the electricity demand minus intermittent renewable electricity production. Detailed operational analyses made for various CHP options within the West Danish energy system, point to the concepts of CHP-HP and CHP-HP cold storage for effectively increasing energy system flexibility. For CHP-HP cold storage, Rc increases from 0.518 to 0.547, while the plant's fuel efficiency increases from 92.0% to 97.2%. These findings are discussed within frameworks of renewable energy systems, suggesting principles for 1st, 2nd, and 3rd generation system designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号