共查询到19条相似文献,搜索用时 46 毫秒
1.
《石油化工》2019,(11)
以1-癸烯、1-辛烯、1-十二烯及其混合烯烃为原料,采用Ziegler-Natta催化剂,通过两段反应温度结合模式制备高黏度聚α-烯烃(PAO)合成油,并研究了原料种类、反应温度、反应时间及催化剂用量对PAO收率和性能的影响。实验结果表明,最佳工艺条件为混合烯烃(1-辛烯与1-癸烯体积比为1)为原料,第一段于20℃反应8 h,第二段于80℃反应2 h,催化剂用量4%(w),n(Al):n(Ti)=3.5。此工艺条件下,PAO收率为91.01%,运动黏度(100℃)为42.03 mm~2/s,黏度指数为157,闪点为288℃,倾点为-44℃。在反应温度230℃、反应压力4.0 MPa、体积空速0.2 h~(-1)、氢油体积比300的条件下加氢精制,PAO加氢产品的运动黏度(100℃)为41.27 mm~2/s,黏度指数为154,闪点为285℃,倾点为-40℃,产品性能优于市售的PAO-40。 相似文献
2.
3.
研究了以1-十六烯和1-十八烯为原料,采用实验室制备的Ziegler-Natta负载型催化剂及市售三乙基铝(TEAl)助催化剂,通过本体聚合的方法,在常压下制备低规整度的聚α-烯烃蜡。考察了不同聚合条件如主催化剂浓度、铝钛摩尔比、聚合温度、聚合时间以及加入外给电子体二苯基二甲氧基硅烷(DDS)对共聚物的粘均相对分子质量和收率的影响。实验结果表明,在主催化剂浓度为1.5 g/L、铝钛摩尔比30、反应温度50 ℃、反应时间90 min的条件下,制备的聚α-烯烃蜡粘均相对分子质量为4 012,滴熔点58.2 ℃,闪点240 ℃,运动粘度4 600 mm2/s,吸油值32.5 g/100 g。 相似文献
4.
王秀绘 《精细石油化工进展》2019,20(5)
合成基础油是通过化学合成的方法制得的润滑油基础油,与矿物基润滑油基础油相比综合性能优异。但目前合成油基础油种类较多,不同种类的润滑油基础油具有不同的性能及使用要求。其中聚α-烯烃合成油(PAO)基础油是目前应用广泛的润滑油基础油之一,是汽车、机械工业和航天工业用合成润滑油的主要原料。本文详细介绍了PAO的特性、产品分类、综合应用、全球PAO产能及需求、PAO发展历程、国内外生产现状以及PAO聚合技术情况,并对国内外产品的差距进行了分析。 相似文献
5.
6.
7.
用Falex试验机考察了硫化异丁烯在聚α-烯烃中的摩擦学性能。结果显示,硫化异丁烯不能改善聚α-烯烃抗磨性能,但可以明显地提高聚α-烯烃的极压性能。 相似文献
8.
9.
以不同α-烯烃为原料和AlCl3为催化剂制得了不同黏度的聚α-烯烃合成润滑油基础油(PAO)。考察了不同α-烯烃原料和AlCl3用量对PAO的性能及聚合可达的最高温度的影响。实验结果表明,以1-辛烯为原料制得的PAO的运动黏度高于以其混合α-烯烃为原料制得的PAO;而黏度指数则低于以其混合α-烯烃为原料制得的PAO。以1-辛烯为原料制备PAO时,选择AlCl3用量为2%~3%(w)(基于α-烯烃的质量)较适宜;以1-癸烯或12碳烯为原料制备PAO时,选择AlCl3用量为3%(w)较适宜。采用单一α-烯烃制备PAO时,以1-癸烯为原料时聚合可达的最高温度(200℃)最高;采用混合α-烯烃制备PAO时,以1-癸烯/12碳烯为原料时聚合可达的最高温度(165℃)最高。 相似文献
10.
表面张力、表面扩张模量是表征气液界面性能的主要参数,并与泡沫稳定性相关.采用界面流变仪(Tracker)考察了三种脂肪醇对α-烯烃磺酸钠(AOS)溶液界面性能的影响,并分析了界面性能和泡沫稳定性间的关系.结果表明,AOS溶液中加入正己醇使溶液的表面张力升高,加入的浓度越高,表面张力越高;而加入正辛醇、十二醇使表面张力降低,且醇浓度越高,溶液表面张力越低;三种醇的加入均使溶液表面扩张模量降低,加入正己醇的溶液表面扩张模量最大,含十二醇的次之,含正辛醇的AOS溶液的表面扩张模量最小;泡沫稳定性与溶液的表面张力大小无直接关系,加入不同醇后的三种AOS溶液的泡沫稳定性与其表面扩张模量的大小顺序一致,但与体系的表面张力无明显关系. 相似文献
11.
利用饱和食盐水进样测试微量氢的同位素组成时,水蒸气对氢同位素组成具有较大影响。实验结果表明,不对色谱柱进行除水时,浓度为0.1%的氢,其6次的同位素组成测试值的标准偏差为17.15,表明尽管测试值的平均值与内标氢同位素组成的公认值之间的差较小,但单次测试结果的可信度较低;而对色谱柱除水后,相同浓度氢同位素组成的6次测试值的标准偏差为4.56,说明色谱柱除水之后,测试值的分布相对集中。研究表明,色谱柱除水能显著提高测试结果的可信度,并且,低浓度氢的氢同位素组成的测试平均值并不能完全代表测试结果的质量,应综合考虑标准偏差参数对测试值进行评价。 相似文献
12.
本文采用有限单元法对下部钻柱静态力学性能进行了分析研究,讨论了静态条件下稳定器位置,井眼变化率,钻挺刚度等对钻头侧向力及其转角的影响。为现场更好地选取钻具组合和确定钻井参数提供了理论依据,为油田的定向井实践所验证。 相似文献
13.
采用中国石油石油化工研究院开发的Pt-Pd/Al_2O_3加氢精制催化剂对聚α-烯烃PAO40粗产品进行了加氢精制。结果表明:在反应温度240~280℃、反应压力4.0~8.0 MPa、体积空速0.1~0.4h-1、氢油体积比300∶1的工艺条件下,PAO40加氢产品的芳烃含量达到国外同类优秀产品水平;PAO40加氢产品经光照30天后不变色,具有较好的光安定性。 相似文献
14.
利用高频往复试验机研究了被微量水污染的含清净剂油品的抗磨减摩性能变化及其作用机理。结果表明:试验选用的5种清净剂均能增强润滑油基础油的抗磨减摩性;碱值高的清净剂C对基础油的润滑性改善效果最好,摩擦因数仅为0.10;但是水对分别添加清净剂A,B,E的油品抗磨性能影响较小,对分别添加清净剂C和D的油品抗磨性能影响较大;当油品中清净剂C加入量(w)为2.0%、水加入量(w)分别为0.1%和0.3%时,往复试验钢球的平均磨斑直径分别增至410.0 μm和416.0 μm,油品抗磨性明显变差。含有相同有机酸基质类型的清净剂,过剩碱性组分的水溶性越强,相应油品测试时钢球的磨斑直径越大;含有相同金属类型,不同有机酸基质清净剂的油品试验时的摩擦因数和钢球磨斑形貌变化趋势不同。 相似文献
15.
在低温(<10℃)条件下采用AlCl3催化1-癸烯齐聚合成高性能聚α-烯烃合成油(PAO),考察了催化剂用量、反应时间、高聚合反应温度对PAO性能的影响。确定最佳工艺条件为:催化剂用量(w)3%,低温反应时间10h,高聚合温度80℃,此工艺条件下产品PAO收率为90.88%,运动黏度(100℃)为62.66mm2/s,黏度指数为163,闪点(开口)为295℃,倾点为-45℃;在反应温度230℃、反应压力4.0MPa、空速0.2h-1、氢油体积比300:1的条件下对PAO进行加氢精制,产品的运动黏度(100℃)为60.07mm2/s,黏度指数为161,闪点(开口)为290℃,倾点为-40℃。 相似文献
16.
以茂金属为主催化剂、三异丁基铝和有机硼化物为助催化剂,煤制α-烯烃为原料,采用釜式聚合法合成了低黏度聚α-烯烃基础油(PAO)。通过考察主催化剂及助催化剂用量、反应温度、反应时间对煤制α-烯烃转化率以及产物分布的影响,确定最佳工艺条件为:主催化剂/煤制α-烯烃质量比为1×10~(-4),Al/Zr摩尔比为9,有机硼化物/茂金属质量比为2,反应温度115℃,反应时间2.5h。在该工艺条件下,所制备的PAO基础油的运动黏度(100℃)为8.15mm~2/s,黏度指数158,倾点-54℃,闪点286℃,诺亚克蒸发损失为3.46%,是一种低黏度、高黏度指数、低倾点、高闪点、低蒸发损失的聚α-烯烃,产品主要由四聚体、五聚体和少量的三聚体、六聚体组成,该工艺具有较好的试验重复性。 相似文献
17.
高含水量液压液HWF综合润滑性能的改进研究 总被引:2,自引:0,他引:2
为解决高含水量液压液用柱塞泵的容积效率下降过快的问题,提出了通过优化润滑添加剂组成以减少泵的灵敏部件磨损从而有效延长泵使用寿命的改进方法。在实验室用7-18碳链长度的脂肪酸和含1-3羟基数目的有机醇胺制备了多种油性剂,用红外、质谱和核磁等手段对反应产物进行了分析鉴定,并用四球机评定它们的润滑性能。最适宜的油性剂油酸二羟胺皂的最佳添加量为1.O%。对比泵台架试验结果表明,用优化改进后的添加剂配制成的高含水量液压液HWF-120的综合润滑性能明显好于改进前的产品和某进口产品,改进后产品在12.5 MPa,46℃下连续运行100 h后泵的容积效率下降仅1.9个百分点,而另两个产品的泵容积效率下降了约7.0个百分点。 相似文献
18.
19.
在氧化铝载体制备过程中添加硼元素进行改性,将所得改性载体通过等体积浸渍法浸渍钨、钼、镍金属溶液,制得低黏度聚α-烯烃合成油加氢精制催化剂,采用XRD、H2-TPR等手段对改性载体和加氢精制催化剂进行表征。结果表明,加氢精制催化剂载体通过硼改性,可以降低活性金属组分与载体的相互作用,催化剂的酸性大大增强,同时还能引入B酸。在反应温度为240 ℃、氢分压为4.5 MPa、体积空速为0.2 h-1、氢油体积比为300∶1的条件下,考察改性加氢精制催化剂应用于PAO4加氢的芳烃饱和性能,并与未改性催化剂进行对比,结果表明,改性前后的加氢精制催化剂均可有效改善产品的颜色,但改性加氢精制催化剂的芳烃饱和性能远远高于未改性催化剂。改性加氢精制催化剂稳定性评价结果表明,该催化剂具有良好的活性稳定性,能够满足工业应用的要求。 相似文献