首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemokine RANTES is thought to be involved in the pathophysiology of inflammation-associated acute lung injury. Although much is known regarding signals that induce RANTES gene expression, relatively few data exist regarding signals that inhibit RANTES gene expression. The heat shock response, a highly conserved cellular defense mechanism, has been demonstrated to inhibit a variety of lung proinflammatory responses. We tested the hypothesis that induction of the heat shock response inhibits RANTES gene expression. Treatment of A549 cells with TNF-alpha induced RANTES gene expression in a concentration-dependent manner. Induction of the heat shock response inhibited subsequent TNF-alpha-mediated RANTES mRNA expression and secretion of immunoreactive RANTES. Transient transfection assays involving a RANTES promoter-luciferase reporter plasmid demonstrated that the heat shock response inhibited TNF-alpha-mediated activation of the RANTES promoter. Inhibition of NF-kappaB nuclear translocation with isohelenin inhibited TNF-alpha-mediated RANTES mRNA expression, indicating that RANTES gene expression is NF-kappaB dependent in A549 cells. Induction of the heat shock response inhibited degradation of the NF-kappaB inhibitory protein, I-kappaBalpha but did not significantly inhibit phosphorylation of I-kappaBalpha. We conclude that the heat shock response inhibits RANTES gene expression by a mechanism involving inhibition of NF-kappaB nuclear translocation and subsequent inhibition of RANTES promoter activation. The mechanism by which the heat shock response inhibits NF-kappaB nuclear translocation involves stabilization of I-kappaBalpha, without significantly affecting phosphorylation of I-kappaBalpha.  相似文献   

2.
3.
OBJECTIVE: The universal cellular response to stress is the expression of a family of genes known as heat shock or stress proteins. We investigated whether bacteria or bacterial products (endotoxin) can induce heat shock protein expression in human enterocytes. DESIGN: Controlled, in vitro study. SETTING: Cell culture laboratory. SUBJECTS: Human Caco-2 enterocyte cell line. MEASUREMENTS AND MAIN RESULTS: Incubation of confluent monolayers of Caco-2 cells with Escherichia coli C25 (1 x 10(9) bacteria/mL) for 1 hr at 37 degrees C was found to induce the expression of the 72-kilodalton molecular weight heat shock protein gene (heat shock protein-72), the major inducible form of the 70-kilodalton molecular weight heat shock protein family of stress proteins, as detected by Western blot analysis. The level of heat shock protein-72 induction after incubation with E. coli was similar to the response of Caco-2 cells to heat shock at 43 degrees C for 1 hr. The induction of heat shock protein-72 gene expression by E. coli was not purely due to the process of phagocytosis, since incubation of Caco-2 cells with latex beads (1 micron) failed to induce heat shock gene expression. To elucidate the possible mechanism of heat shock protein-72 induction mediated by bacteria, Caco-2 cells were incubated with E. coli endotoxin (200 micrograms/mL) for 1 hr at 37 degrees C. Such treatment was also found to induce the synthesis of heat shock protein-72. CONCLUSIONS: These results demonstrate that bacteria and/or bacterial products induce the heat shock gene expression in Caco-2 cells. Since intestinal epithelial cells are constantly in contact with bacteria and bacterial products, we speculate that the heat shock gene expression may be part of the natural mechanism of protection for these cells in the potentially harmful environment that may be present in the intestinal tract.  相似文献   

4.
We have developed a method to target gene expression in the Drosophila embryo to a specific cell without having a promoter that directs expression in that particular cell. Using a digitally enhanced imaging system to identify single cells within the living embryo, we apply a heat shock to each cell individually by using a laser microbeam. A 1- to 2-min laser treatment is sufficient to induce a heat-shock response but is not lethal to the heat-shocked cells. Induction of heat shock was measured in a variety of cell types, including neurons and somatic muscles, by the expression of beta-galactosidase from an hsp26-lacZ reporter construct or by expression of a UAS target gene after induction of hsGAL4. We discuss the applicability of this technique to ectopic gene expression studies, lineage tracing, gene inactivation studies, and studies of cells in vitro. Laser heat shock is a versatile technique that can be adapted for use in a variety of research organisms and is useful for any studies in which it is desirable to express a given gene in only a distinct cell or clone of cells, either transiently or constitutively, at a time point of choice.  相似文献   

5.
In order to address the question whether stress in intact higher animals may induce cellular heat shock response in distal organs, the inhibition of normal gene expression was studied on the basis of our previous findings about the induction of heat shock proteins in liver and brain of rats after scalding. Male SD rats were scalded on the back, 10-240 min thereafter decapitated, and the heat shock suppressed gene-1 was quantitated by dot blotting. The results showed that gene-1 decreased rapidly after scalding in both the organs, and did not recover to control levels even 240 min after scalding. The decrease of gene-1 went parallell with the severity of scalding. Thus it may be concluded that stress may induce heat shock response of distant organs in intact animals. Possible pathological significance of these findings was discussed.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Human T-cell lymphotropic virus type I (HTLV-I) infection is typically associated with long incubation periods between virus exposure and disease manifestation. Although viral protein expression is considered to play an important role in the pathogenesis of HTLV-I-associated diseases, limited information is known regarding host cell mechanisms that control viral gene expression. This study was designed to evaluate modulation of HTLV-I gene expression following induction of the cellular stress response in HTLV-I-infected lymphocytes. The cellular stress response was elicited by treatment with either Na arsenite or thermal stress and was monitored by demonstrating increased expression of the 72-kDa heat shock protein. Induction of the cellular stress response in HTLV-I-infected lymphocytes resulted in significantly increased HTLV-I-mediated syncytia formation due to enhanced HTLV-I envelope (gp46) expression. Intracellular viral proteins and released p24 capsid protein were increased in stressed infected lymphocytes as compared to nonstressed infected lymphocytes. Furthermore, HTLV-I-LTR reporter gene constructs had increased activity (three- to sixfold) in a transiently transfected, uninfected lymphocyte cell line following induction of the cellular stress response. Quantitation of HTLV-I RNA expression by slot blot analysis of infected lymphocytes suggested variable increases in RNA accumulation. Northern blot analysis demonstrated no qualitative changes in expression of RNA species. These data suggest a relationship between modulation of viral replication and a basic cellular response to stress and have important implications for understanding host cell control mechanisms of HTLV-I expression.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号