首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A micro electro discharge machine with an inchworm type of micro feed mechanism has been developed. The prototype of micro electro discharge machine is comprised of a wire electro discharge grinding unit, a rotating unit of electrode, RC circuitry for micro electro discharge generation and a subsystem detecting and controlling machining process, in addition to the inchworm mechanism. In the design of the inchworm mechanism, a novel clamp mechanism with force magnifying structure is devised to increase its thrust capability and a pair of guide sleeves together with the clamps are used to decrease yawing error. The inchworm mechanism prototype has 60 mm stroke only limited by the length of the shaft, less than 2 μm yawing error and reaches to 30N output thrust force. The machining experiments carried out on the micro EDM prototype are also described. The techniques to machine micro electrode, micro holes with high aspect ratio, micro structures on stainless steel and silicon materials are discussed. Micro electrode diameter as small as 25 μm and micro holes with minimum size of less than 50 μm are obtained. And the maximum aspect ratios of micro electrodes and micro holes exceed 20 and 10 respectively.  相似文献   

2.
喷油嘴微孔电火花加工机床机电控制系统设计   总被引:1,自引:0,他引:1  
喷油嘴喷孔加工质量直接影响发动机的燃料喷射和燃烧性能。喷油嘴喷孔机械钻削加工已难以适应高压力、微细喷孔喷油嘴发展的需要。微细电火花加工喷油嘴喷孔具有无宏观加工力、无毛刺、可加工微细喷孔以及可在热处理后加工等优点。文章结合自主设计研发的喷油嘴微细孔电火花加工机床,设计了机床的机电伺服控制系统,并进行了控制系统性能优化,进行了喷油嘴微细喷孔的电火花加工实验和工业应用,较好地满足了喷油嘴微细喷孔加工的工业需求。  相似文献   

3.
微细电火花加工设备技术研究   总被引:2,自引:0,他引:2  
微细电火花加工的关键设备技术涉及电极的微进给伺服机构、电极和工件的附加树对运动机构、微小能量放电电源以及加工状态检测与控制系统等。文章围绕微细电火花加工系统的设计系统,介绍基于压电致动原理以及摩擦传动的微进给机构、工具电极的线放电磨削机构和旋转主轴、以及微小能量放电电源的设计等,并指出需要进一步研究的课题。  相似文献   

4.
The micro machining of copper plates by the electrical discharge machining (EDM) process is described. Tungsten carbide was selected as the material for the electrode. Experiments were carried out on a conventional CNC-EDM machine to investigate machining of micro holes, and micro slots. The results show that micro holes, and micro slots can be successfully processed on a conventional CNC-EDM machine. To improve the productivity of micro parts using the EDM process, a batch production method of micro EDM using multi-electrodes has been studied. A new technique for preparing multi-electrodes has been developed. Results also show that the batch production of micro parts using EDM is feasible and that the batch production of micro parts using EDM process with multi-electrodes is very effective.  相似文献   

5.
磨粒辅助EDM与ECM复合加工技术   总被引:1,自引:0,他引:1  
微机电系统(Micro electromechanical systems,MEMS)的快速发展与产品微型化的发展趋势对微细结构表面(包括微孔、微槽和微棱柱/锥等)的加工质量提出了更高的要求,为了提高微细结构表面的加工质量,提出一种磨粒辅助放电加工(Electrodischarge machining,EDM)与电化学加工(Electro chemical machining,ECM)复合加工新方法,通过建立微加工模型分析了该方法的加工机理,搭建了微加工试验平台,并进行了工艺参数优化研究,采用直径500μm和75μm的钨电极在SUS 304不锈钢上分别进行了微盲孔和微通孔加工试验研究,结果表明,在所用的EDM、EDM与ECM复合加工和磨粒辅助EDM与ECM复合加工三种方法中,磨粒辅助EDM与ECM复合加工方法获得的表面粗糙度(Ra15 nm)最高,因此该方法是微细结构表面高效和高质量加工的最佳方法之一。  相似文献   

6.
Electrical discharge machining (EDM) is one of the most promising non-traditional micro-scale machining methods. Because several operating parameters that are insignificant in macro EDM cannot be neglected during micro EDM process, models derived from the macro EDM process may be inappropriate at the micro scale. This paper contains a comprehensive review of size effects in traditional micro-machining and characteristics specific to micro EDM compared to macro EDM techniques. The very concept of size effects in micro EDM is thoroughly defined and three categories of effects are presented: material microstructure, processing parameter and thermal conduction size effects. Future potential research directions on the subject are also summarized. We assert that careful research and precise attention must be given to size effects in micro EDM. Size effect information especially benefits the machining speed and machining precision of micro EDM.  相似文献   

7.
首先简要介绍了电火花微细加工目前的发展状况。并概括地分析了商品电火花成形机用于微细加工所具有的一些特殊优势。最后通过微轴的加工实例来证实其进行实用微细加工的可行性。  相似文献   

8.
Micro electro discharge machining (micro EDM) is suitable for machining micro holes on metal alloy materials, and the micro holes can be machined even to several microns by use of wire electro discharge grinding (WEDG) of micro electrodes. However, considering practicability of micro holes <Φ100 μm in batch processing, the controllable accuracy of holes’ diameter, the consistency accuracy of repeated machining and the processing efficiency are required to be systematically improved. On the basis of conventional WEDG method, a tangential feed WEDG (TF-WEDG) method combined with on-line measurement using a charge coupled device (CCD) was proposed for improving on-line machining accuracy of micro electrodes. In TF-WEDG, removal resolution of micro-electrode diameter (the minimum thickness to be removed from micro electrode) is greatly improved by feeding the electrode along the tangential direction of wire-guide arc, and the resolution is further improved by employing negative polarity machining. Taking advantage of the high removal resolution, the precise diameter of micro-electrode can be achieved by the tangential feed of electrode to a certain position after diameter feedback of on-line measurement. Furthermore, a hybrid process was presented by combining the TF-WEDG method and a self-drilled holes method to improve the machining efficiency of micro electrodes. A cyclic alternating process of micro-electrode repeated machining and micro holes’ drilling was implemented for array micro holes with high consistency accuracy. Micro-EDM experiments were carried out for verifying the proposed methods and processes, and the experimental results show that the repeated machining accuracy of micro electrodes was less than 2 μm and the consistency accuracy of array micro holes was ±1.1 μm.  相似文献   

9.
基于微细电火花加工的要求,对微细电火花成形加工设备中的关键技术进行研究,成功研制了一套高精度的微细放电加工设备产品,包括一台微细电火花加工机床和一台精密脉冲电源。优化机床关键零/部件的结构后,机床的变形小,运动精度高;电源放电稳定,控制精确。经加工试验表明,该设备加工效果较好,加工精度和稳定性较高,加工出的窄槽工件的尺寸精度可达到5μm,加工直径为300μm的小孔,其圆度误差达到3μm,可满足微细电火花加工的要求。  相似文献   

10.
微细电火花加工中电极材料的蚀除机理研究   总被引:10,自引:0,他引:10  
在微细电火花加工过程中 ,由于放电时间极短 ,使得其阴阳两极的电极材料蚀除过程产生较大的差异。本文应用传热学和电场的基本理论 ,分别对微细电火花加工阴阳两极的材料蚀除机理进行了理论研究 ,得出了在窄脉宽微细电火花加工中 ,尽量缩短脉宽可提高阳极材料的去除效率 ,同时又不会明显增加阴极材料损耗的结论。为微细电火花加工脉冲电源设计及加工工艺的改进提供了理论依据  相似文献   

11.
大深径比微小孔快速电火花加工系统研究   总被引:2,自引:2,他引:0  
电火花加工因具有宏观作用力小、可控性好等优点,被广泛应用于微小孔加工领域,但对于快速加工大深径比微小孔仍存在散热困难、排屑不畅、电极损耗大及加工过程不易控制等技术难点。为此,在分析电火花加工机理及加工特点的基础上,研发了一台用于快速加工大深径比微小孔的电火花机床。该设备通过采用立式布局,应用电极旋转、工件振动的旋振式机构,实现在加工过程中快速散热和排屑;通过采取工业控制计算机搭载数据采集卡和运动控制器的方式,实现了加工过程的检测控制功能一体化。针对电火花加工过程中放电信号严重畸变以及放电状态不稳定导致加工状态难检测的问题,提出了两级模糊逐级映射放电状态检测方法,同时为了实现机床的快速响应和精确控制,设计了双闭环加工控制系统。实验表明,该机床适合于大深径比微小孔的快速加工,且性能稳定,可靠性高。  相似文献   

12.
This paper studies the influence of various factors contributing to micro electrode wear during electrical discharge machining (EDM) drilling with micro rod and micro tube electrodes. In this paper, a simple method for calculating volumetric wear ratios is proposed based only on geometrical information obtained from the process. The objective of the research is to investigate the wear behaviour of electrodes and the suitability of electrode wear compensation methods. Electrode shape deformation and random variation of the volumetric wear are studied as the main factors affecting the applicability of wear compensation methods and as an indicator of the accuracy achievable with the micro EDM process.  相似文献   

13.
电火花成形加工技术的现状与发展趋势   总被引:7,自引:0,他引:7  
介绍了电火花成形加工技术的发展现状 ,综合评述了电火花成形加工技术在加工理论、加工设备结构的改进、加工工艺、数控系统、操作安全与环境保护等方面的发展趋势。  相似文献   

14.
The most used processes for generation of high aspect ratio microchannels are Nd: YAG laser technology on silica substrate and ultra violate lithography (UV-LIGA) process on metals. There are a few micromachining technologies such as micro mechanical milling, micro electro discharge machining (EDM) and electrochemical micromachining (EMM) for production of high-aspect-ratio micro features on highly stressed and anticorrosive metal like stainless steel. This paper discusses the micro fabrication of high aspect ratio micro features at the intended location on high strength stainless steel sheet of very small thickness to high thickness with highest average aspect ratio 14.33 achieved during microchannel generation by EMM with the help of coated microtool. Mathematical model relating aspect ratio with various parameters and machining conditions is derived to explore the ways to increase the aspect ratio of micro features. Experimental investigations were carried out to know the effect of vibration of microtool, frequency of pulsed voltage, microtool tip shape, thickness of work piece and non-conducting layer coated microtool on high aspect ratio micro features. Vibration of microtool with very small amplitude improved the stability of micromachining due to improved flow of electrolyte.  相似文献   

15.
微细球状电极制备研究   总被引:2,自引:1,他引:1  
微细球状电极在精微加工、测量领域有很大的应用空间,为制备低成本、高精度微细球状电极,提出新的制备工艺,在微细电解加工机床上运用微细电化学刻蚀(Micro electro-chemical machining,micro-ECM)—单脉冲放电加工(One pulseelectro discharge,OPEG)组合技术制...  相似文献   

16.
电解加工在微细制造技术中的应用研究   总被引:3,自引:0,他引:3  
电解加工是利用阳极金属电化学溶解原理来去除材料的制造技术,这种微去除方式使得电解具有微细加工的可能,这里着重探讨了高频窄脉冲微细电解加工技术、电液束微细电解加工技术和利用电解制备微细电极的工作原理,技术特点,应用领域和加工精度,并详细的讨论了目前微细电解加工脉冲电源和加工设备的研制和发展。  相似文献   

17.
针对钛合金深小孔加工的技术难点,研制了具有四轴联动功能的微细超声电火花加工机床,在所研制的机床上,进行了钛合金深小孔超声电火花复合加工实验,就超声振动及削边电极在加工中的作用进行了系统和研究。  相似文献   

18.
The miniaturization of parts and components plays an important role in today’s economy, enabling the design and production of new and highly sophisticated technology in various industrial fields, such as medical, bio-chemistry, automotive, and telecommunications. Nowadays, production technology faces the challenge to manufacture small components within tight tolerances, yet, which still remain economical in large lots. In order to successfully harness this task, separating processes have been fitted to suit the needs for micro mold manufacturing and were combined with a subsequent injection-molding process to satisfy the need for large-scale production with a vast variety of possible materials. Hereafter, the scope lies on the production technology for micro mold manufacturing, namely, micro milling, micro electro discharge machining (micro EDM), and micro laser ablation. The characteristics of each process are introduced and compared to each other, concerning surface properties, achievable tolerances, potential for miniaturization, machinable scope of materials, and manufacturing productivity.  相似文献   

19.
MICRO ELECTRICAL DISCHARGE MACHINING DEPOSITION IN AIR   总被引:1,自引:0,他引:1  
A new deposition method is described using micro electrical discharge machining (EDM) to deposit tool electrode material on workpiece in air. The basic principles of micro electrical discharge deposition (EDD) are analyzed and the realized conditions are predicted. With an ordinary EDM shaping machine, brass as the electrode, high-speed steel as the workpiece, a lot of experiments are carried out on micro EDD systematically and thoroughly. The effects of major processing parameters, such as the discharge current, discharge duration, pulse interval and working medium, are obtained. As a result, a micro cylinder with 0.19 mm in diameter and 7.35 mm in height is deposited. By exchanging the polarities of the electrode and workpiece the micro cylinder can be removed selectively. So the reversible machining of deposition and removal is achieved, which breaks through the constraint of traditional EDM. Measurements show that the deposited material is compact and close to workpiece base, whose components depend on the tool electrode material.  相似文献   

20.
Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metaliographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号