首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper studies the heat loss of a linear absorber with a trapezoidal cavity and a set of pipes used for a linear Fresnel reflecting solar concentrator. The study includes the measurements on a 1.4 m long prototype installed in a laboratory, and its thermal simulation in steady-state using EnergyPlus software. Results of the measured vertical temperature variation inside the cavity, the surface interior and exterior wall and window temperatures, the global heat loss at steady-state and the heat loss coefficients, are presented for six different temperatures of the pipes. Measurements revealed a stable thermal gradient in the upper portion of the cavity and a convective zone below it. Around 91% of the heat transferred to outdoors occurs at the bottom transparent window, for a pipe temperature of 200 °C. The heat loss coefficient per area of absorbing pipes ranged from 3.39 W/m2K to 6.35 W/m2K (for 110 °C < Tpipe < 285 °C), and it increased with the increase of Tpipe. Simpler and less time-consuming available free software originally designed for heat transfer in buildings was tested to be a possible replacement of the highly complex CFD software commonly used to simulate the steady-state heat loss of the absorber. The experimental and predicted data sets were found to be in good agreement.  相似文献   

2.
The numerical and experimental studies are conducted to analyze the heat loss in the cavity absorbers of linear Fresnel reflecting solar concentrator (LFRSC). The cavity is trapezoidal shape in cross section, which is placed at focus of the concentrator, has multiple tubes and water is used as the working fluid. The upper surface of the cavity has two models; with copper plate, above which absorber tubes are placed together and without copper plate i.e. absorber tubes alone without copper plate underneath. In both the models, the heat loss coefficient of projected absorber surfaces is analyzed with and without black chrome coating. For the numerical simulation of the trapezoidal cavity absorber, ANSYS FLUENT 12.0 version is used to develop the two dimensional model with non-Boussinesq numerical approximation. For the experimental study, two cavity absorbers are designed for operating in conjunction with a LFRSC experimental set up for the area of 4.0 m2. The overall heat loss coefficients are also estimated analytically by cavity correlations. The trend of variation of estimated heat loss coefficient by both methods is similar to experimental values. Also, estimated values by numerical study are very close to analytical and experimental values and the numerical model can be used for further analysis.  相似文献   

3.
Spray-pyrolysed selective cobalt-oxide (CoOx) coatings were prepared on the surface of a bright nickel-plated copper tubular absorber (α = 0.89–0.91 and ?100°C = 0.18) for operation in conjunction with a prototype linear Fresnel reflector solar concentrator (LFRSC). Some preliminary tests were conducted to study the optical and thermal performance characteristics of the selective cobalt-oxide coated absorber in the concentrated solar flux. The tests conducted included determination of the overall heat loss coefficient UL of the absorber at temperatures from 50 to ~ 120°C, and the optical efficiency ηo of the concentrator-absorber system, and measurement of the stagnation temperature of the absorber with the prototype solar concentrator. Based on the results of UL and ηo measurements, the thermal efficiency η of the concentrator-absorber system at a working temperature of 115°C has been determined for a typical beam radiation Ib of 600 W/m2. Further, comparison of the results of this study with those obtained using a dimensionally identical black-painted absorber indicates that the performance of the selective cobalt-oxide coated absorber is considerably superior to that of an ordinary black-painted absorber.  相似文献   

4.
The outlet temperature, corresponding thermal efficiency and the stagnation temperature available with a linear solar concentrator using a tubular absorber have been calculated, taking into account the temperature dependence of the heat-loss coefficient. The results of some typical numerical calculations are presented graphically and discussed.  相似文献   

5.
Two different approaches for designing a linear Fresnel reflector solar concentrator (LFRSC) with a flat horizontal absorber are described. The performance characteristics of both the designs are studied in detail. The distribution of local concentration ratio on the surface of the absorber, for each design, is investigated using the ray trace technique. Results of some typical numerical calculations are presented graphically and discussed.  相似文献   

6.
The thermal emittance of infrared reflectors, deposited by DC-magnetron sputtering on glass substrates of spectrally selective solar absorbers was studied. The deposition process was optimized in order to decrease the thermal emittance of the absorber. The sputter deposition process was optimized with regard to applied power and argon pressure for nickel–vanadium, copper–nickel and copper. The results show that the thermal emittance of the infrared reflector in a tandem solar absorber can be reduced from 0.12 to 0.06 by replacing nickel–chromium by copper–nickel. The copper–nickel alloy has a higher deposition rate and is less sensitive to the sputtering conditions, which is also favorable in large-scale industrial production.  相似文献   

7.
The main objective of this study is the investigation of the effect of the optical path of incident beam solar radiation on the performance of a linear Fresnel concentrating solar collector. The requirements regarding the kinematics of the reflectors are examined, allowing the effective focus of the reflected radiation on the receiver cover. A methodology for the calculation of the reflection angles of the sun rays incident on the mirrors, as well as of the incidence angles of the reflected rays on the cover, as a function of the sun position and the geometry of the collector is proposed. Specific scenarios, describing the effect of the solar radiation optical path on the collected heat, are formulated, each of them leading to a different form for the instantaneous efficiency equation. The evaluation and analysis of these scenarios, on the basis of actual operation conditions, has shown that the effect of the reflection and incidence angles throughout the modeling of the collector and the calculation of the useful thermal power cannot be neglected.  相似文献   

8.
This paper presents an optical design based on a single-reflection criterion, and performance characteristics of an east-west aligned nontracking seasonally adjusted linear trough solar concentrator with a flat horizontal absorber, using plane mirror elements. The design procedure allows the use of any desired number of mirror elements to reflect solar energy onto the base absorber in one reflection. The angle of inclination of each mirror element with respect to the absorber surface, and the width of the mirror element, are determined so that a ray incident on the extreme upper edge of the mirror element at a specified angle to the normal to the concentrator aperture (acceptance half-angle), after reflection, strikes the extreme edge of the absorber on the opposite side of the mirror element. Other rays making angles less than the design acceptance half-angle are also reflected onto the base absorber in one reflection. Concentrator designs resulting from this approach appear to have the important characteristic of relatively smaller heights, and hence appear highly cost-effective in terms of the amount of material required for fabrication. Some numerical calculations have been carried out to illustrate the performance of concentrators for different acceptance half-angles. Results obtained are presented in graphic and tabular forms, and are discussed.  相似文献   

9.
Solar cavity receiver plays a dominant role in the light-heat conversion. Its performance can directly affect the efficiency of the whole power generation system. A combined calculation method for evaluating the thermal performance of the solar cavity receiver is raised in this paper. This method couples the Monte-Carlo method, the correlations of the flow boiling heat transfer, and the calculation of air flow field. And this method can ultimately figure out the surface heat flux inside the cavity, the wall temperature of the boiling tubes, and the heat loss of the solar receiver with an iterative solution. With this method, the thermal performance of a solar cavity receiver, a saturated steam receiver, is simulated under different wind environments. The highest wall temperature of the boiling tubes is about 150 °C higher than the water saturation temperature. And it appears in the upper middle parts of the absorbing panels. Changing the wind angle or velocity can obviously affect the air velocity inside the receiver. The air velocity reaches the maximum value when the wind comes from the side of the receiver (flow angle α = 90°). The heat loss of the solar cavity receiver also reaches a maximum for the side-on wind.  相似文献   

10.
In this paper, thermal performance analysis of 20 m2 prototype fuzzy focal solar dish collector is presented. The focal image characteristics of the solar dish are determined to propose the suitable design of absorber/receiver. First, theoretical thermal performance analysis of the fuzzy focal solar parabolic dish concentrator with modified cavity receiver is carried out for different operating conditions. Based on the theoretical performance analysis, the total heat loss (conduction, convection and radiation heat losses) from the modified cavity receiver is estimated. It is observed that the maximum theoretical efficiencies of solar dish collector are found to be as 79.2% for no wind conditions and 78.2% and 77.8% for side-on and head-on winds speed of 5 m/s respectively. Latter, real time analysis of parabolic dish collector with modified cavity receiver is carried out in terms of stagnation test, time constant test and daily performance test. From stagnation test, the overall heat loss coefficient is found to be 356 W/m2 K. The time constant test is carried out to determine the influence of sudden change in solar radiation at steady state conditions. The daily performance tests are conducted for different flow rates. It is found that the efficiency of the collector increases with the increase of volume flow rates. The average thermal efficiencies of the parabolic dish collector for the volume flow rate of 100 L/h and 250 L/h are found to be 69% and 74% for the average beam radiation (Ibn) of 532 W/m2 and 641 W/m2 respectively.  相似文献   

11.
In this paper, a comprehensive numerical model was developed by coupling Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) for simulating the energy conversion process in the linear Fresnel reflector (LFR) with a Trapezoidal Cavity Receiver (TCR). Based on the model, firstly, the optical performance of a typical LFR was studied, followed by analyzing its heat transfer characteristics and thermal performance at various conditions. Then, the effects of key parameters were investigated. Finally, a LFR prototype was simulated to illustrate the application of the model. The results indicate that the solar fluxes on the absorber tubes exhibit non-uniform characteristics which would result in the non-uniform temperatures. The annual optical efficiency of 60.1%–44.7% from the equator to N50° and the collector efficiency of 48.3%–72.0% for the superheating section at normal incidence can be achieved, respectively. Moreover, the heat transfer characteristic study reveals that the radiation loss from the tubes is the dominant mode and contributes around 81%–87% at typical conditions. Parameter studies indicate that the energy absorbed by the glass which influences the heat loss obviously should be considered in the heat loss study of TCR. And the heat loss from the tubes increases rapidly with the coating emissivity, so the coating with low emissivity should be recommended for the TCR. In addition, the application in the realistic LFR indicates that the present model is an exercisable and useful tool for the LFR.  相似文献   

12.
The performance of combined photovoltaic-thermal concentrator-receiver systems consisting of a linear solar concentrator and a linear absorber on which solar cells are mounted has been studied. Three types of absorbers shapes—flat horizontal, flat vertical, and tubular have been considered. Expressions for the overall electrical power output and efficiency for each absorber geometry have been obtained. Comparative performances have been presented graphically and discussed.  相似文献   

13.
Direct liquid-immersion cooling of concentrator solar cells was proposed as a solution for receiver thermal management of concentrating photovoltaic (CPV) and hybrid concentrating photovoltaic thermal (CPV-T) systems. De-ionized (DI) water, isopropyl alcohol (IPA), ethyl acetate, and dimethyl silicon oil were selected as potential immersion liquids based on optical transmittance measurement results. Improvements to the electrical performance of silicon CPV cells were observed under a range of concentrations in the candidate dielectric liquids, arising from improved light collection and reduced cell surface recombination losses from surface adsorption of polar molecules. Three-dimensional numerical simulations with the four candidate liquids as the working fluids, exploring the thermal performance of a silicon CPV cell array in a liquid immersion prototype receiver, have been performed. Simulation results show that the direct-immersion cooling approach can maintain low and uniform cell temperature in the designed liquid immersion receiver. The fluid inlet velocity and flow mode, along with the fluid thermal properties, all have a significant influence on the cell array temperature.  相似文献   

14.
A 2-D model has been proposed to investigate the approximate estimation of the natural convection heat loss from modified cavity receiver of without insulation (WOI) and with insulation (WI) at the bottom of the aperture plane in our previous article. In this paper, a 3-D numerical model is presented to investigate the accurate estimation of natural convection heat loss from modified cavity receiver (WOI) of fuzzy focal solar dish concentrator. A comparison of 2-D and 3-D natural convection heat loss from a modified cavity receiver is carried out. A parametric study is carried out to develop separate Nusselt number correlations for 2-D and 3-D geometries of modified cavity receiver for estimation of convective heat loss from the receiver. The results show that the 2-D and 3-D are comparable only at higher angle of inclinations (60° ? β ? 90°) of the receiver. The present 3-D numerical model is compared with other well known cavity receiver models. The 3-D model can be used for accurate estimation of heat losses from solar dish collector, when compared with other well known models.  相似文献   

15.
This paper presents the thermal performance of a double-pass solar collector with and without porous media in the second or lower channel of the collector. The experimental setup has been designed to study the thermal performance over a range of design and operating conditions. Several important relationships between the design and operating conditions have been obtained. These relationships effect the thermal performance of the double-pass solar collector. The relationships include the effect of changes in upper and lower channel depth on the thermal efficiency with and without porous media. Moreover, the effects of mass flow rate, solar radiation, and temperature rises on the thermal efficiency of the double-pass solar collector have been studied. The study concluded that the presence of porous media in the second channel increases the outlet temperature, therefore increases the thermal efficiency of the systems.  相似文献   

16.
This study focuses on the experimental investigation and exergy analysis of a modified solar still (MSS) with convex lenses on glass cover to collect the solar radiation at the focus on surface water. A comparative analysis of the performance and yield of the MSS with convex lenses and the conventional single slope SS were carried out for the same climatic condition of Tanta (Egypt). Similarly, the effect of modification in the SS using convex lenses, with or without black stones, on the freshwater yield is experimentally investigated. The results indicated that the lenses focus the solar radiation to the water placed in the basin and increase the water‐glass temperature difference (T w T g). The yield of freshwater from the MSS with the convex lenses is comparatively higher than that of the conventional SS (26.64%). In addition to convex lenses in the inner cover surface, freshwater yield improved by 35.55% by adding blue stones as energy material inside the basin under constant water mass of 30 kg. The maximum exergy efficiency of the SS with lenses and blue stones was 11.7%, while the SS with lenses alone was 4%. The quality of freshwater produced after desalination was well within the World Health Organization standards. The total dissolved solids and pH after desalination were 22 mg/L and 8.08, respectively.  相似文献   

17.
利用蒙特卡洛光线追踪法分析了6种不同开口比(D/d)的球形腔式吸热器的光学性能,并以光学模拟所得壁面能流作为热分析的边界条件导入CFD软件中,运用CFD软件对6种不同开口比的球形腔式吸热器进行流固耦合传热计算,获得了球形腔式吸热器和内部流体的温度场分布。通过计算球形腔式吸热器的反射光损失、对流热损失和热辐射损失,得到聚光器/球形腔式吸热器系统的光热转化效率为81.9%~84.4%,球形腔式吸热器的最佳开口比1相似文献   

18.
Dish‐Stirling concentrated solar power (DS‐CSP) system is a complex system for solar energy‐thermal‐electric conversion. The dish concentrator and cavity receiver are optical devices for collecting the solar energy in DS‐CSP system; to determine the geometric parameters of dish concentrator is one of the important steps for design and development of DS‐CSP system, because it directly affects the optical performance of the cavity receiver. In this paper, the effects of the geometric parameters of a dish concentrator including aperture radius, focal length, unfilled radius, and fan‐shaped unfilled angle on optical performance (ie, optical efficiency and flux distribution) of a cavity receiver were studied. Furthermore, the influence of the receiver‐window radius of the cavity receiver and solar direct normal irradiance is also investigated. The cavity receiver is a novel structure that is equipped with a reflecting cone at bottom of the cavity to increases the optical efficiency of the cavity receiver. Moreover, a 2‐dimensional ray‐tracking program is developed to simulate the sunlight transmission path in DS‐CSP system, for helping understanding the effects mechanism of above parameters on optical performance of the cavity receiver. The analysis indicates that the optical efficiency of the cavity receiver with and without the reflecting cone is 89.88% and 85.70%, respectively, and former significantly increased 4.18% for 38 kW XEM‐Dish system. The uniformity factor of the flux distribution on the absorber surface decreases with the decreases of the rim angle of the dish concentrator, but the optical efficiency of the cavity receiver increases with the decreases of the rim angle and the increase amplitude becomes smaller and smaller when the rim angle range from 30° to 75°, So the optical efficiency and uniformity factor are conflicting performance index. Moreover, the unfilled radius has small effect on the optical efficiency, while the fan‐shaped unfilled angle and direct normal irradiance both not affect the optical efficiency. In addition, reducing the receiver‐window radius can improve the optical efficiency, but the effect is limited. This work could provide reference for design and optimization of the dish concentrator and establishing the foundation for further research on optical‐to‐thermal energy conversion.  相似文献   

19.
针对影响双轴跟踪槽式太阳能系统集热效率的多种因素,文章采用量纲分析法建立了集热效率预测模型,构建了包括Re数在内的5个无量纲量。实验测试了不同工况下系统的集热性能,通过多元线性回归对集热效率预测模型进行了求解。研究结果表明:在文章研究范围内,Re对集热效率的影响较大,太阳辐照量、集热管几何参数以及传热工质物性等对集热效率影响相对较小;在集热效率预测模型复测样本范围内,集热效率计算值和实测值之间的最大相对误差不超过15%。文章建立的双轴跟踪槽式太阳能系统集热效率预测模型精度较高,可为槽式太阳能系统的工程设计和优化运行提供理论依据。  相似文献   

20.
Energy analysis of a solar air collector with rows of fins   总被引:2,自引:0,他引:2  
The necessity for improving the thermal performances of the solar air collector, for some needs, encouraged us to carry out this study. Initially, to improve the efficiency factor of these solar collectors, we create an increasingly turbulent flow between the absorber and the back wooden plate. For that, we use obstacles of various forms. In this study, we chose rectangular plate fins inserted perpendicular to the flow. The fluid flows out through the interstices between fins in the same row, this allows a good distribution of the fluid and reduces the dead zones. Secondly, and for the same configuration, we undertake a study on the evaluation of the transfer coefficient. The results are compared with those obtained with a solar air collector without fins, using two types of absorbers selective (in coppersun) or not selective (black-painted aluminium).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号