首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
太阳能地面采暖系统蓄热水箱容积分析   总被引:4,自引:0,他引:4  
通过分析太阳能采暖系统所需蓄热鼍与建筑热负荷、太阳能集热量日变化规律之间的关系,得出太阳能采暖系统所需蓄热水箱容积的理论算式.根据拉萨、银川、西宁、西安等地的太阳辐射强度及建筑热负荷的日变化规律,模拟得出系统所需蓄热量变化规律;并对各种蓄热温差下对应的蓄热水箱容积进行了模拟分析,结果表明:太阳能采暖系统所需蓄热量随太阳集热器的集热量与建筑热负荷之间的差值增大而增加;蓄热水箱容积随蓄热温差增大而减小,当蓄热水温达到80℃时,在各种地面采暖系统取水温度下,单位集热器面积所需蓄热水箱容积趋于相等.  相似文献   

2.
A solar adsorption cooling system was constructed in the green building of Shanghai Institute of Building Science. The system consisted of evacuated tube solar collector arrays of area 150 m2, two adsorption chillers with nominal cooling capacity of 8.5 kW for each and a hot water storage tank of 2.5 m3 in volume. A mathematical model of the system was established. According to experimental results under typical weather condition of Shanghai, the average cooling capacity of the system was 15.3 kW during continuous operation for 8 h. The theoretical analysis of the system was verified and found to agree well with the experimental results. The performance analysis showed that solar radiant intensity had a more distinct influence on the performance of solar adsorption cooling system as compared with ambient temperature. It was observed that the cooling capacity increased with the increase of solar collector area, whereas, solar collecting efficiency varied quite contrary. With the increase of water tank volume, cooling capacity decreased, while, the solar collecting efficiency increased. The system performances can be enhanced by increasing the height-to-diameter ratio of water tank. Additionally, it was observed that solar collecting efficiency decreased with the increase of the initial temperature of water in the tank; however, cooling capacity varied on the contrary. Also can be seen is that optimum nondimensional mass flow rate is 0.7 when the specific mass flow rate exceeds 0.012 kg/m2 s.  相似文献   

3.
Solar thermal driven cooling systems for residential applications are a promising alternative to electric compression chillers, although its market introduction still represents a challenge, mainly due to the higher investment costs. The most common system configuration is an absorption chiller driven by a solar thermal system, backed up by a secondary heating source, normally a gas boiler. Heat storage in the primary (solar) circuit is mandatory to stabilize and extend the operation of the chiller, whereas a cold storage tank is not so common.This paper deals with the selection of the most suitable configuration for residential cooling systems with solar energy. In Spain, where cooling needs are usually higher than heating needs, the interest of a reversible heat pump as auxiliary system and a secondary cooling storage are analyzed.A complete TRNSYS model has been developed to compare a configuration with just hot storage (of typical capacity 40 L/m2 of solar collector surface) and a configuration with both, hot and cool storages. The most suitable configuration is very sensible to the solar collector area. As the collector area increases, the advantages of a cool storage vanish. Increasing the collector area tends to increase the temperature of the hot storage, leading to higher thermal losses in both the collector and the tank. When the storage volume is concentrated in one tank, these effects are mitigated. The effect of other variables on the optimal configuration are also analyzed: collector efficiency curve, COP of the absorption chiller, storage size, and temperature set-points of the chillers.  相似文献   

4.
This work presents a comparative study of the performance of absorption cooling systems with internal storage and with external storage. A full dynamic simulation model including the solar collector field, the absorption heat pump system and the building loads has been performed. The first system is composed by four heat pumps that store energy in the form of crystallized salts so that no external storage capacity is required. The second one is a conventional system composed of one liquid absorption pump and external storage in a water tank. Many batteries of simulations have been done to evaluate the performance of these cooling machines when varying solar field surface, solar collector’s efficiency curve and the storage capacity of the systems. Two different indices have been calculated to analyze the response of both systems: Solar Fraction and Primary Energy Ratio. The comparison between both absorption chillers indicates that in order to reach similar values of storage energy, conventional system has a greater room requirement than four units with internal storage working in parallel, requiring an external water tank of at least 15 m3.  相似文献   

5.
Building integrated solar systems have been considered as a reasonable system for building heating, cooling and hot water supply. Various types of solar collectors, such as plate type, evacuated tube type and solar air collector, have been used as the heat source, whereas adsorption chillers, absorption chillers and desiccant dehumidification systems have been considered to match the above solar heat sources. Now, such sorption chillers are more matured, but their coupling with suitable solar heat source is not well researched. Experimental study has been done in this paper to analyse four kinds of typical solar air‐conditioning system with different sorption chillers and solar collectors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This paper resents a thermal simulation of the Colorado State University solar house. A computer model of the solar energy system was developed and computer runs were made using one year of meteorological data to determine the important design features. The system consists of a flat plate solar collector, main storage tank, service hot water storage tank, auxiliary heater, absorption air conditioner with cooling tower and heat exchangers between the collector and storage, storage and service hot water tank and storage and residence. This system very closely models the CSU house in operating mode one.The results are in the form of monthly integrated values for the pertinent energy quantities. In addition, results are presented which show the effect on the system performance of the collector tilt, collector area and number of covers.  相似文献   

7.
The objective of the present work is to investigate experimentally the thermal behavior of a packed bed of combined sensible and latent heat thermal energy storage (TES) unit. A TES unit is designed, constructed and integrated with constant temperature bath/solar collector to study the performance of the storage unit. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the constant temperature bath/solar collector to the TES tank also acts as sensible heat storage (SHS) material. Charging experiments are carried out at constant and varying (solar energy) inlet fluid temperatures to examine the effects of inlet fluid temperature and flow rate of HTF on the performance of the storage unit. Discharging experiments are carried out by both continuous and batchwise processes to recover the stored heat. The significance of time wise variation of HTF and PCM temperatures during charging and discharging processes is discussed in detail and the performance parameters such as instantaneous heat stored and cumulative heat stored are also studied. The performance of the present system is compared with that of the conventional SHS system. It is found from the discharging experiments that the combined storage system employing batchwise discharging of hot water from the TES tank is best suited for applications where the requirement is intermittent.  相似文献   

8.
This paper reports the investigation results on application of the solar assisted air source heat pump systems for hot water production in Hong Kong. A mathematical model of the system is developed to predict its operating performance under specified weather conditions. The optimum flow rate from the load water tank to the condenser is proposed considering both the appropriate outlet water temperature and system performance. The effect of various parameters, including circulation flow rate, solar collector area, tilt angle of solar collector array and initial water temperature in the preheating solar tank is investigated, and the results show that the system performance is governed strongly by the change of circulation flow rate, solar collector area and initial water temperature in the preheating solar tank.  相似文献   

9.
To performance comparative studies, two sets of water-in-glass evacuated tube solar water heater (SWH, in short) were constructed and tested. Both SWHs were identical in all aspects but had different collector tilt-angle from the horizon with the one inclined at 22° (SWH-22) and the other at 46° (SWH-46). Experimental results revealed that the collector tilt-angle of SWHs had no significant influence on the heat removal from solar tubes to the water storage tank, both systems had almost the same daily solar thermal conversion efficiency but different daily solar and heat gains, and climatic conditions had a negligible effect on the daily thermal efficiency of systems due to less heat loss of the collector to the ambient air. These findings indicated that, to maximize the annual heat gain of such solar water heaters, the collector should be inclined at a tilt-angle for maximizing its annual collection of solar radiation. Experiments also showed that, for the SWH-22, the cold water from the storage tank circulated down to the sealed end of tubes along the lower wall of tubes and then returned to the storage tank along the upper wall of solar tubes with a clear water circulation loop; whereas for the SWH-46, the situation in the morning was the same as the SWH-22, but in the afternoon, the cold water from the storage tank on the way to the sealed end was partially or fully mixed with the hot water returning to the storage tank without a clear water circulation loop, furthermore, such mixing became more intense with the increase in the inlet water temperature of solar tubes. This indicated that increasing the collector tilt-angle of SWHs had no positive effect on the thermosiphon circulation of the water inside tubes. No noticeable inactive region near the sealed end of solar tubes for both systems was observed in experiments.  相似文献   

10.
This paper presents the performance results for a sensible heat storage system. The system under study operates as an air source heat pump which stores the compressor heat of rejection as domestic hot water or hot water in a storage tank that can be used as a heat source for providing building heating. Although measurements were made to quantify space cooling, space heating, and domestic water heating, this paper emphasizes the space heating performance of the unit. The heat storage system was tested for different indoor and outdoor conditions to determine parameters such as heating charge rate, compressor power, and coefficient of performance (COP). The thermal storage tank was able to store a full charge of heat. The rate of increase of storage tank temperature increased with outdoor temperature. The heating rate during a charge test, best shown by the normalized rate plots, increased with evaporating temperature due to the increasing mass flow rate and refrigerant density. At higher indoor temperature during the discharge tests, the rate of decrease of storage tank temperature was slower. Also, the discharge heating rate decreased with time since the thermal storage tank temperature decreased as less thermal energy became available for use. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

In this paper, a parametric analysis of two solar heating and cooling systems, one using an absorption heat pump and the other one using an adsorption heat pump, was performed. The systems under investigation were designed to satisfy the energy requirements of a residential building for space heating/cooling purposes and domestic hot water production. The system with the absorption heat pump was analyzed upon varying (i) the solar collectors’ area, (ii) the volume of the hot water storage, (iii) the volume of the cold water tank, and (iv) the climatic conditions. The system with the adsorption heat pump was evaluated upon varying (i) the inlet temperature of hot water supplied to the adsorption heat pump, (ii) the volume of the hot water storage, (iii) the volume of the cold water tank, and (iv) the climatic conditions. The analyses were performed using the dynamic simulation software TRNSYS in terms of primary energy consumption, global carbon dioxide equivalent emissions, and operating costs. The performance of the solar heating and cooling systems was compared with those associated with a conventional system from energy, environmental and economic points of views in order to evaluate the potential benefits.  相似文献   

12.
介绍了一种兼具蓄热与散热两种状态的太阳能供暖用睡床。该睡床的下部为蓄热水箱,可从太阳能集热板获取热量供给睡床。研究了基于该睡床的供暖系统在北京地区的应用情况,并分析了不同状态下床板上表面的散热量与被褥内的温度。结果表明:在全天散热状态下,典型年供暖季集热器效率为37.7 %,复合型睡床的有效供热量为4 390.2 MJ,太阳能保证率为80.7 %;在白天保温−夜间散热下,集热器效率为33.1 %,复合型睡床的有效供热量为4 441.1 MJ,太阳能保证率为81.8 %。  相似文献   

13.
This study investigates the performance of an adsorption chiller driven by thermal heat collected from solar collectors’ panels with heat storage. The heat is reserved in a storage tank and the reserved heat is used to drive the adsorption chiller. The investigation was carried on the climatic conditions of Dhaka, Bangladesh. Heat transfer fluid goes from the collectors to the adsorption cooling unit, then from the adsorption cooling unit to the storage tank. It is seen that heat storage is more effective than direct solar coupling; however, it requires more collectors, depending on the size of the storage tank. The analysis shows that cycle time is one of the most influential parameters for the solar-driven adsorption cooling system. It is seen that the size of the collector can be reduced if the proper cycle time is adjusted. The analysis also revealed that the system with 22 collectors (each of 2.415 m2) along with 1000 s cycle time provides better performance for the base run conditions. It is also seen that the solar-driven adsorption chiller with heat storage works well beyond the sunset time.  相似文献   

14.
The performance of two R-11-charged integrated solar water heater collectors was investigated experimentally for forced and natural circulation water flows. The heat transfer from the refrigerant loop to the hot water storage tank took place through a condenser of novel design integrated within the collector frame. The effect of the condenser inclination on the system efficiency was remarkable for natural circulation water flow but had no significant effect for forced circulation flow. The difference in thermal response between the refrigerant and water loops caused buildup of stored energy in the condenser. This energy affected the buoyancy forces and generated flow pulsation that caused a harmonic-like variation of the system efficiency. This effect vanished with forced water circulation flow. The system efficiency varied between 20 and 50% depending on the solar insolation.  相似文献   

15.
A.A Mohamad 《Solar Energy》1997,61(3):211-218
Water heating by utilizing solar energy for domestic use is a well established technique. However, most systems consist of the solar collector and storage tank as separate units and require piping and extra thermal insulation for both. This work considers an integrated system, which is easy to manufacture or to modify the storage tank to operate as a solar collector as well as a storage tank. The system contains a thermal diode to prevent reverse circulation at night-time. A prototype is constructed and a mathematical model is developed to study the thermal performance of the integrated system. It is found that the thermal efficiency of the suggested system is comparable with conventional systems. Also, simulation indicated that the thermal diode significantly reduces heat losses at night-time.  相似文献   

16.
In this study, zero energy building (ZEB) with four occupants in the capital and most populated city of Iran as one of the biggest greenhouse gas producers is simulated and designed to reduce Iran's greenhouse emissions. Due to the benefits of hydrogen energy and its usages, it is used as the primary energy storage of this building. Also, the thermal comfort of occupants is evaluated using the Fanger model, and domestic hot water consumption is supplied. Using hydrogen energy as energy storage of an off-grid zero energy building in Iran by considering occupant thermal comfort using the fanger model has been presented for the first time in this study. The contribution of electrolyzer and fuel cell in supplying domestic hot water is shown. For this simulation, Trnsys software is used. Using Trnsys software, the transient performance of mentioned ZEB is evaluated in a year. PV panels are used for supplying electricity consumption of the building. Excess produced electricity is converted to hydrogen and stored in the hydrogen tank when a lack of sunrays exists and electricity is required. An evacuated tube solar collector is used to produce hot water. The produced hot water will be stored in the hot water tank. For supplying the cooling load, hot water fired water-cooled absorption chiller is used. Also, a fan coil with hot water circulation and humidifier are used for heating and humidifying the building. Domestic hot water consumption of the occupants is supplied using stored hot water and rejected heat of fuel cell and the electrolyzer. The thermal comfort of occupants is evaluated using the Fanger model with MATLAB software. Results show that using 64 m2 PV panel power consumption of the building is supplied without a power outage, and final hydrogen pressure tank will be higher than its initial and building will be zero energy. Required hot water of the building is provided with 75 m2 evacuated tube solar collector. The HVAC system of the building provided thermal comfort during a year. The monthly average of occupant predicted mean vote (PMV) is between ?0.4 and 0.4. Their predicted percentage of dissatisfaction (PPD) is lower than 13%. Also, supplied domestic hot water (DHW) always has a temperature of 50 °C, which is a setpoint temperature of DHW. Finally, it can be concluded that using the building's rooftop area can be transformed to ZEB and reduce a significant amount of greenhouse emissions of Iran. Also, it can be concluded that fuel cell rejected heat, unlike electrolyzer, can significantly contribute to supplying domestic hot water requirements. Rejected heat of electrolyzer for heating domestic water can be ignored.  相似文献   

17.
Finding the global optimal combination of the main components for a solar thermal energy system is an important topic in utilising solar radiation in a cost-effective way. However, selecting an optimal solar thermal system in a cold climate condition is a challenging task due to the dependency on the heat demand and the limited availability of solar radiation. This research presents several sets of optimum combinations of a solar thermal collector and a hot water storage tank regarding energy efficiency and the life cycle cost. Since domestic hot water consumption forms the significant part of the heat demand in new energy efficient apartment buildings, the applied consumption information were extracted precisely according to measured data. The solar thermal system with cost-optimal component sizes was able to save district heat energy consumption up 24% to 34% and made 4 €/m^2 to 23 €/m^2 in financial profit.  相似文献   

18.
杨安礼  王海峰  陈莉莉  王龙龙 《节能》2012,31(10):57-60
基于太阳能集热器和热能蓄热器这一套能量转换和收集设备的基础上,为吸收式制冷、供暖、供热水提供热力驱动。系统组成包括太阳能集热蓄热部分,共用集热蓄热装置的制冷、供暖、供热水等三大功能循环系统,电路及其自动控制部分。该系统通过集热管和蓄热装置,将分散化、低品位的太阳能转换为较高品位的热能并存储起来,同时将其它形式的废热通过换热装置储存于蓄热装置内。三大循环能够按需获取热能,提高能源的利用效率。  相似文献   

19.
介绍了一种新型笼屉式相变蓄热水箱,通过实验测试对比分析相变蓄热水箱与普通蓄热水箱对太阳能组合系统的太阳能保证率及系统能效比的影响。实验表明:同等水箱容积,使用相变蓄热水箱时太阳能集热系统的小时集热量为普通蓄热水箱的3.7倍,相变蓄热水箱有利于提高太阳能保证率及系统能效比。在太阳能辐照强度相似的情况下,相变蓄热水箱会使太阳能保证率平均提高72%,使系统能效比平均提高26%。同时相变蓄热水箱可减少夜间水箱上部的热损失,使水箱上部水温降减少50%。  相似文献   

20.
The research goal was to develop a new solar water heater system (SWHS) that used a solar water pump instead of an electric pump. The pump was powered by the steam produced from a flat plate collector. Therefore, heat could be transferred downward from the collector to a hot water storage tank. The designed system consisted of four panels of flat plate solar collectors, an overhead tank installed at an upper level and a large water storage tank with a heat exchanger at a lower level. Discharge heads of 1, 1.5 and 2 m were tested. The pump could operate at the collector temperature of about 70–90 °C and vapor gage pressure of 7–14 kPa. It was found that water circulation within the SWHS ranged between 12 and 59 l/d depending on the incident solar intensity and system discharge head. The average daily pump efficiency was about 0.0014–0.0019%. Moreover, the SWHS could have a daily thermal efficiency of about 7–13%, whereas a conventional system had 30–60% efficiency. The present system was economically comparable to a conventional one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号