首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The biodiesel (fatty acid methyl esters, FAME) was prepared by transesterification of the mixed oil (soybean oil and rapeseed oil) with sodium hydroxide (NaOH) as catalyst. The effects of mole ratio of methanol to oil, reaction temperature, catalyst amount and reaction time on the yield were studied. In order to decrease the operational temperature, a co-solvent (hexane) was added into the reactants and the conversion efficiency of the reaction was improved. The optimal reaction conditions were obtained by this experiment: methanol/oil mole ratio 5.0:1, reaction temperature 55 °C, catalyst amount 0.8 wt.% and reaction time 2.0 h. Under the optimum conditions, a 94% yield of methyl esters was reached ∼94%. The structure of the biodiesel was characterized by FT-IR spectroscopy. The sulfur content of biodiesel was determined by Inductively Coupled Plasma emission spectrometer (ICP), and the satisfied result was obtained. The properties of obtained biodiesel from mixed oil are close to commercial diesel fuel and is rated as a realistic fuel as an alternative to diesel. Production of biodiesel has positive impact on the utilization of agricultural and forestry products.  相似文献   

2.
Biodiesel was derived from okra (Hibiscus esculentus) seed oil by methanol-induced transesterification using an alkali catalyst. Transesterification of the tested okra seed oil under optimum conditions: 7:1 methanol to oil molar ratio, 1.00% (w/w) NaOCH3 catalyst, temperature 65 °C and 600 rpm agitation intensity exhibited 96.8% of okra oil methyl esters (OOMEs) yield. The OOMEs/biodiesel produced was analyzed by GC/MS, which showed that it mainly consisted of four fatty acids: linoleic (30.31%), palmitic (30.23%), oleic (29.09%) and stearic (4.93%). A small amount of 2-octyl cyclopropaneoctanoic acid with contribution 1.92% was also established. Fuel properties of OOMEs such as density, kinematic viscosity, cetane number, oxidative stability, lubricity, flash point, cold flow properties, sulfur contents and acid value were comparable with those of ASTM D 6751 and EN 14214, where applicable. It was concluded that okra seed oil is an acceptable feedstock for biodiesel production.  相似文献   

3.
Camelina oil is a low-cost feedstock for biodiesel production that has received a great deal of attention in recent years. This paper describes an optimization study on the production of biodiesel from camelina seed oil using alkaline transesterification. The optimization was based on sixteen well-planned orthogonal experiments (OA16 matrix). Four main process conditions in the transesterification reaction for obtaining the maximum biodiesel production yield (i.e. methanol quantity, reaction time, reaction temperature and catalyst concentration) were investigated. It was found that the order of significant factors for biodiesel production is catalyst concentration > reaction time > reaction temperature > methanol to oil ratio. Based on the results of the range analysis and analysis of variance (ANOVA), the maximum biodiesel yield was found at a molar ratio of methanol to oil of 8:1, a reaction time of 70 min, a reaction temperature of 50 °C, and a catalyst concentration of 1 wt.%. The product and FAME yields of biodiesel under optimal conditions reached 95.8% and 98.4%, respectively. The properties of the optimized biodiesel, including density, kinematic viscosity, acid value, etc., were determined and compared with those produced from other oil feedstocks. The optimized biodiesel from camelina oil meets the relevant ASTM D6571 and EN 14214 biodiesel standards and can be used as a qualified fuel for diesel engines.  相似文献   

4.
Opium poppy, Papaver somniferum L., is one of the ancient herbal medicines. In addition to this medical use of latex, opium that is extracted from the immature seed capsule, it is also used illegally for pleasure. It is being produced in great quantities in Turkey especially in Afyonkarahisar city. The seeds of opium poppy plant have high ratio oil content. The opium poppy seeds and oil of these seeds are purely used as an ingredient in production of bakery products. In this study, biodiesel evaluation of the opium poppy seeds that have a high oil ratio is aimed. Alkali catalyzed (NaOH) single-phase reaction was preferred to produce biodiesel from opium poppy oil. The parameters like catalyst concentration, methanol ratio, reaction temperature were optimized and biodiesel production was obtained with high yield in reaction time of 75 min. The methyl ester content in the opium poppy oil biodiesel was determined with Gas Chromatography–Frame Ionized Detector (GC–FID). In optimum conditions, methanol ratio and catalyst concentration was determined as 20 wt% and 0.5 wt%, respectively. The reaction temperature was optimized as 60 °C. Biodiesel was obtained from the opium poppy oil under optimum conditions. Some basic features of the produced methyl esters were determined.  相似文献   

5.
A comparative study of vegetable oil methyl esters (biodiesels)   总被引:1,自引:0,他引:1  
In the present study, rubber seed oil, coconut oil and palm kernel oil, which are locally available especially in Kerala (India), are chosen and their transesterification processes have been investigated. The various process variables like temperature, catalyst concentration, amount of methanol and reaction time were optimized. Biodiesel from rubber seed oil (with high free fatty acid) was produced by employing two-step pretreatment process (acid esterification) to reduce acid value from 48 to 1.72 mg KOH/g with 0.40 and 0.35 v/v methanol-oil ratio and 1.0% v/v H2SO4 as catalyst at a temperature of 63(±2) °C with 1 h reaction time followed by transesterification using methanol-oil ratio of 0.30 v/v, 0.5 w/v KOH as alkaline catalyst at 55(±2) °C with 40 min reaction time to yield 98-99% biodiesel. Coconut oil and palm oil, being edible oils, transesterification with 0.25 v/v methanol-oil ratio, 0.50% w/v KOH as at 58(±2) °C, 20 min reaction time for coconut oil and 0.25% v/v methanol-oil ratio, 0.50% w/v KOH as alkaline catalyst at 60(±2) °C for palm kernel oil will convert them to 98-99% biodiesel. The brake thermal efficiency of palm oil biodiesel was higher with lower brake specific fuel consumption, but rubber seed oil biodiesel(ROB) showed less emission (CO and NOx) compared to other biodiesels.  相似文献   

6.
Biodiesel production from crude rice bran oil and properties as fuel   总被引:1,自引:0,他引:1  
This research reported on the successfully production of biodiesel by transesterification of crude rice bran oil (RBO). The process included three-steps. Firstly, the acid value of RBO was reduced to below 1 mg KOH/g by two-steps pretreatment process in the presence of sulfuric acid catalyst. Secondly, the product prepared from the first process was carried out esterification with an alkaline catalyst. The influence of four variables on conversion efficiency to methyl ester, i.e., methanol/RBO molar ratio, catalyst amount, reaction temperature and reaction time, was studied at this stage. The content of methyl ester was analyzed by chromatographic analysis. Through orthogonal analysis of parameters in a four-factor and three-level test, the optimum reaction conditions for the transesterification were obtained: methanol/RBO molar ratio 6:1, usage amount of KOH 0.9% w/w, reaction temperature 60 °C and reaction time 60 min. In the third step, methyl ester prepared from the second processing step was refined to become biodiesel. Fuel properties of RBO biodiesel were studied and compared according to ASTM D6751-02 and DIN V51606 standards for biodiesel. Most fuel properties complied with the limits prescribed in the aforementioned standards. The consequent engine test showed a similar power output compared with regular diesel but consumption rate was slightly higher. Emission tests showed a marked decrease in CO, HC and PM, however, with a slight increase in NOX.  相似文献   

7.
In the present work the production of biodiesel using bitter almond oil (BAO) in a potassium hydroxide catalyzed transesterification reaction was investigated. The BAO was obtained from resources available in Iran and its physical and chemical properties including iodine value, acid value, density, kinematic viscosity, fatty acid composition and mean molecular weight were specified. The low acid value of BAO (0.24 mg KOH/g) indicated that the pretreatment of raw oil with acid was not required. The fatty acid content analysis confirmed that the contribution of unsaturated fatty acids in the BAO is high (84.7 wt.%). Effect of different parameters including methanol to oil molar ratio (3–11 mol/mol), potassium hydroxide concentration (0.1–1.7% w/w) and reaction temperature (30–70 °C) on the production of biodiesel were investigated. The results indicated that these parameters were important factors affecting the tranesterification reaction. The fuel properties of biodiesel including iodine value, acid value, density, kinematic viscosity, saponification value, cetane number, flash point, cloud point, pour point and distillation characteristics were measured. The properties were compared with those of petroleum diesel, EN 14214 and ASTM 6751 biodiesel standards and an acceptable agreement was observed.  相似文献   

8.
In the present work the production of a biodiesel from watermelon seed oil (Citrullus vulgaris) by methanol-induced transesterification using an alkaline catalyst (potassium hydroxide, KOH) has been examined. The influence of the operating variables such as agitation speed, temperature, reaction time, alcohol amount, and catalyst concentration was determined experimentally and found to be 550 rpm agitation rate, 60°C reaction temperature, 55 min reaction time, 20% of methanol, and 13 g of catalysts concentration for 2.5 liters of oil. The yield of biodiesel from the watermelon methyl ester (WME) under optimized conditions is found to be 91%. The properties of biodiesel are measured as per ASTM standards and compared with the base diesel.  相似文献   

9.
Availability of information on the efficiency of applied conditions to biodiesel synthesis from diverse seed oil can establish optimal biodiesel yield from favourable reaction variables. The effect of reaction parameters; temperature, time and catalyst amount, were varied on biodiesel yield from alcoholysis of Parinari polyandra oil using potassium hydroxide as catalyst. Maximum biodiesel yield of 95.62% was obtained from the experimental results. Analysis of Variance revealed that the reaction variables had significant effects on biodiesel yield. Data analysis predicted an optimal biodiesel yield of 92.75% at reaction conditions of 61.20°C temperature, 60 min, and 1?wt% of catalyst amount. Validation experiments of the optimal conditions gave an average biodiesel yield of 91.72%. The study established optimal conditions of temperature, time, and catalyst amount for biodiesel production from P. polyandra oil. The fuel properties of the biodiesel fell within the standards of the American Society for Testing and Materials D6751.  相似文献   

10.
The enzymatic production of biodiesel by transesterification of cottonseed oil was studied using low cost crude pancreatic lipase as catalyst in a batch system. The effects of the critical process parameters including water percentage, methanol:oil ratio, enzyme concentration, buffer pH and reaction temperature were determined. Maximum conversion of 75–80% was achieved after 4 h at 37 °C, pH 7.0 and with 1:15 M ratio of oil to methanol, 0.5% (wt of oil) enzyme and water concentration of 5% (wt of oil). Various organic solvents were tested among which a partially polar solvent (t-butanol) was found to be suitable for the reaction. The major fuel characteristics like specific gravity, kinematic viscosity, flash point and calorific value of the 20:80 blends (B20) of the fatty acid methyl esters with petroleum diesel conformed very closely to those of American Society for Testing Materials (ASTM) standards.  相似文献   

11.
The production of ethyl ester from a feed material of esterified crude palm oil with 1.7 wt% of free fatty acid (FFA) content using microwave heating was investigated. Parametric studies were carried out to investigate the optimum conditions for the transesterification process (amount of ethanol, amount of catalyst and reaction time). As a result, optimum reaction parameters for the transesterification process aided by microwave heating have been identified: a molar ratio of oil to ethanol of 1:8.5, 1.5 wt% of KOH/oil, a reaction time of 5 min and a microwave power of 70 W. Glycerin from the ester phase was separated by adding 10 wt% of pure glycerin. The ethyl ester was purified with 1.2 wt% of bleaching earth to remove the residual catalyst and residual glycerin. This transesterification process provided a yield of 85 wt% with an ester content of 98.1 wt%. The final ethyl ester product met the specifications stipulated by ASTM D6751-02.  相似文献   

12.
Lithium impregnated calcium oxide has been prepared by wet impregnation method in nano particle form as supported by powder X-ray diffraction and transmission electron microscopy. Basic strength of the same was measured by Hammett indicators. Calcium oxide impregnated with 1.75 wt% of lithium was used as solid catalyst for the transesterification karanja and jatropha oil, containing 3.4 and 8.3 wt% of free fatty acids, respectively. The reaction parameters, viz., reaction temperature, alcohol to oil molar ratio, free fatty acid contents, amount of catalyst and amount of impregnated lithium ion in calcium oxide support, have been studied to establish the most suitable condition for the transesterification reaction. The complete transesterification of karanja and jatropha oils was achieved in 1 and 2 h, respectively, at 65 °C, utilizing 12:1 molar ratio of methanol to oil and 5 wt% (catalyst/oil, w/w) of catalyst. Few physicochemical properties of the prepared biodiesel samples have been studied and compared with standard values.  相似文献   

13.
In the present study, copper vanadium phosphate (CuVOP) with three-dimensional network structure was synthesized by hydrothermal method, and was characterized by Infrared spectrum (IR), elemental analysis (EA), EDXRF (energy dispersive X ray fluorescence) etc. Moreover, soybean oil was used as feedstock for producing biodiesel, and biodiesel was produced by CuVOP-catalyzed transesterification process. Response surface methodology was employed to statistically evaluate and optimize the conditions for the maximum conversion to biodiesel, and the effects of amount of catalyst, ratio of methanol to oil, reaction time and reaction temperature were investigated by the 24 full-factorial central composite design. The maximum conversion is obtained at amount of catalyst of 1.5%, methanol/oil molar ratio of 6.75, reaction temperature of 65 °C and reaction time of 5 h. Copper vanadium phosphate CuVOP resulted very active in the transesterification reaction for biodiesel production.  相似文献   

14.
Heterogeneous transesterification of waste cooking palm oil (WCPO) to biodiesel over Sr/ZrO2 catalyst and the optimization of the process have been investigated. Response surface methodology (RSM) was employed to study the relationships of methanol to oil molar ratio, catalyst loading, reaction time, and reaction temperature on methyl ester yield and free fatty acid conversion. The experiments were designed using central composite by applying 24 full factorial designs with two centre points. Transesterification of WCPO produced 79.7% maximum methyl ester yield at the optimum methanol to oil molar ratio = 29:1, catalyst loading = 2.7 wt%, reaction time = 87 min and reaction temperature = 115.5 °C.  相似文献   

15.
This paper, reports experimental work on the use of new heterogeneous solid basic catalysts for biodiesel production: double oxides of Mg and Al, produced by calcination, at high temperature, of MgAl lamellar structures, the hydrotalcites (HT). The most suitable catalyst system studied are hydrotalcite Mg:Al 2:1 calcinated at 507 °C and 700 °C, leading to higher values of FAME also in the second reaction stage. One of the prepared catalysts resulted in 97.1% Fatty acids methyl esters (FAME) in the 1st reaction step, 92.2% FAME in the 2nd reaction step and 34% FAME in the 3rd reaction step. The biodiesel obtained in the transesterification reaction showed composition and quality parameters within the limits specified by the European Standard EN 14214. 2.5% wt catalyst/oil and a molar ratio methanol:oil of 9:1 or 12:1 at 60–65 °C and 4 h of reaction time are the best operating conditions achieved in this study. This study showed the potential of Mg/Al hydrotalcites as heterogeneous catalysts for biodiesel production.  相似文献   

16.
Morpholine basic ionic liquid was synthesized with N-methyl morpholine, N-butyl bromide, and KOH by two-step method and was used to catalyze the transesterification of soybean oil with methanol to biodiesel. The structure of the catalyst were examined by 1H nuclear magnetic resonance. The effects of the molar ratio of methanol to oil, reaction temperature, and amount of catalyst on the biodiesel yield were investigated. Optimized biodiesel yield of 94.5% was achieved with catalyst amount of 3.0 wt%, and methanol to soybean oil molar ratio of 14:1 at reaction temperature of 60 °C for 6 h. The catalyst has maintained sustained activity after being employed to six cycles. The prepared biodiesel component was analyzed by gas chromatography-mass spectrometry (GC-MS) and the results showed that the biodiesel comprised of hexadecanoic acid methyl ester, 10, 13-octadecadienoic acid methyl ester, 9-octadecenoic acid methyl ester, and octadecanoic acid methyl ester, illustrating that fatty acids of soybean oil were converted completely.  相似文献   

17.
Cesium modified sodium zirconate (Cs-Na2ZrO3) was prepared by ionic exchange from sodium zirconate (Na2ZrO3), which was synthesized via a solid state reaction. Both ceramics, i.e., pristine Na2ZrO3 and the Cs-Na2ZrO3, were used as basic heterogeneous catalysts in biodiesel production. Soybean and Jatropha oils were used as triglyceride sources for transesterification reactions. Parameters, such as catalyst concentration (between 0.5 and 3 wt%), reaction time, different methanol/vegetable oil molar ratios, and temperature of the reaction, were evaluated. The cesium cation influence was evaluated from the basic transesterification reactivity. The results showed that the introduction of cesium significantly modified the catalytic activity in biodiesel production. Cs enhanced the reaction kinetics in obtaining biodiesel and reduced the reaction time in comparison with pristine Na2ZrO3. The results showed that Cs-Na2ZrO3 as a basic heterogeneous catalyst exhibited the best fatty acid methyl esters (FAME) conversion for soybean oil (98.8%) at 1 wt%, 30:1 methanol/oil ratio, 65 °C, and 15 min. The best conditions for Jatropha oil (90.8%) were 3 wt%, 15:1 methanol/oil ratio, 65 °C, and 1 h. The impregnation of Na2ZrO3 with cesium represents a very exciting alternative heterogeneous base catalyst for biodiesel production.  相似文献   

18.
This article predicts the optimum conditions for the production of fatty acid ethyl ester (Biodiesel) by trans-esterification process of waste cooking sunflower oil with ethanol in the presence of homogeneous catalyst (KOH). Response surface methodology (RSM) based on central composite rotatable design (CCRD) was used for predicting the mathematical regression equation and optimizing the biodiesel yield. The optimum reaction conditions were found to be 9.05 (mole mole?1) of (ethanol to waste cooking sunflower oil ratio), 0.99 (wt% to oil) of catalyst concentration, 57.31°C of reaction temperature, 77.12 minutes of reaction time, and 494.94 rpm of mixing rate to achieve 96.33% biodiesel yield by weight. The production rate of produced biodiesel also increased significantly. The fuel properties were measured and found closer to the ASTM standards of biodiesel. Therefore, the suggested biofuel has good scope for use in compression ignition (CI) engines.  相似文献   

19.
The waste Capiz shell was utilized as raw material for catalyst production for biodiesel preparation. During calcination process, the calcium carbonate content in the waste capiz shell was converted to CaO. This calcium oxide was used as catalyst for transesterification reaction between palm oil and methanol to produce biodiesel. The biodiesel preparation was conducted under the following conditions: the mole ration between methanol and palm oil was 8:1, stirring speed was 700 rpm, and reaction temperature was 60 °C for 4, 5, and 6 h reaction time. The amount of catalyst was varied at 1, 2, 3, 4, and 5 wt %. The maximum yield of biodiesel was 93 ± 2.2%, obtained at 6 h of reaction time and 3 wt % of amount of catalyst. In order to examine the reusability of catalyst developed from waste of capiz (Amusium cristatum) shell, three transesterification reaction cycles were also performed.  相似文献   

20.
Karanj oil having high free fatty acid was neutralized with a dilute alkali solution and then mixed with soybean oil in different ratios in order to reduce the free fatty acid content significantly. The mixture of the oils was then transesterified with methanol to produce fatty acid methyl ester. The transesterification was carried out using ultrasonication energy of 20 kHz in pulse mode. It was found that up to 60% Karanj oil in the blended mixture could produce good quality biodiesel that met the ASTM standards. However, the lesser content of Karanj oil in the mixture, the lesser the reaction parameters viz. alcohol to oil molar ratio, catalyst concentration, and reaction time. About 99% yield of methyl esters was obtained when the Karanj oil content in the mixture was 20% with a reaction time of 30 min, catalyst concentration 1 wt%, and a temperature of 55°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号