首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
The present work presents a simple model for matching coiled capillary tubes and the refrigerant charge in a split air conditioner when the other components are fixed. The system model is composed of sub-models for the key components, i.e., a lumped model for the compressor, zone models for the condenser and the evaporator, and a four flow region distributed model for the coiled adiabatic capillary tube in series with the liquid tube. The C-M-N method is employed to calculate the friction factors in the coiled capillary tube. HCFC22 and HC290 are used for the simulations. The comparison of the model prediction with experimental data shows the errors are less than ±5% except for the mass flow rate with a maximum deviation of 8.63%. The results confirm that both the cooling capacity and input power are slightly reduced when HCFC22 is replaced by HC290 with the coiled capillary tube and refrigerant charge matched to the HC290 refrigerant. The results also show that when coil diameter is reduced from 0.3 m to 0.04 m, the capillary tube length is reduced by about 10% for both HCFC22 and HC290. This model can be used to design components for small air conditioning systems using HCFC22 and HC290.  相似文献   

2.
This paper presents the effects of various geometries of helical capillary tubes on the flow characteristics of alternative refrigerants flowing through adiabatic helical capillary tubes. The theoretical model is based on the conservation of mass, energy and momentum of fluids in the capillary tube. The two-phase flow model developed was based on a homogenous flow assumption. The model was validated by comparing it with the experimental data of published in literature for R-22, particularly various pairs of refrigerants. It was found conventional refrigerants had lower capillary lengths than alternative refrigerants. For all pairs, the numerical results showed that the traditional refrigerants consistently gave lower pressure drops for both single-phase and two-phase flows, which resulted in longer tube lengths. The results show that coil diameter variation (less than 300 mm) for helical capillary tube geometries affected the length of helical capillary tubes. However, pitch variation (more than 300 mm) had no significant effect on the length of helical capillary tubes. This adiabatic helical capillary tube model can be used to integrate system models working with alternative refrigerants for design and optimisation.  相似文献   

3.
This paper presents a numerical investigation of the flow characteristics of helical capillary tubes compared with straight capillary tubes. The homogenous two-phase flow model developed is based on the conservation of mass, energy, and momentum of the fluids in the capillary tube. This model is validated by comparing it with the experimental data of both straight and helical capillary tubes. Comparisons of the predicted results between the straight and helical capillary tubes are presented, together with the experimental results for straight capillary tubes obtained by previous researchers. The results show that the refrigerant flowing through the straight capillary tube provides a slightly lower pressure drop than that in the helical capillary tube, which resulted in a total tube length that was longer by about 20%. In addition, for the same tube length, the mass flow rate in the helical capillary tube with a coil diameter of 40 mm is 9% less than that in the straight tube. Finally, the results obtained from the present model show reasonable agreement with the experimental data of helical capillary tubes and can also be applied to predict the flow characteristics of straight capillary tubes by changing to straight tube friction factors, for which Churchill's equation was used in the present study.  相似文献   

4.
R22 has been generally accepted as the most suitable refrigerant for air conditioners, due to its favorable thermodynamic properties. However, R22 is a controlled substance under the Montreal protocol. M20 is a HFC/HC refrigerant mixture that can be used as a substitute for R22. This paper presents experimental investigation on the performance comparison of a window air conditioner operated with the M20 tested under different refrigerant charge levels and outdoor conditions against that with R22. Experiments were conducted in accordance with BIS procedure in a psychrometric test facility. Refrigerant charge in the air conditioner was systematically varied from 900 to 1600 g in steps of 50 g for R22 and 697 to 1279 g in steps of 39 g [equivalent to 50 g of R22] for the M20. At each charge levels, the outdoor room conditions were changed in accordance with BIS standards. It is observed that R22 is more sensitive to deviations in charge levels as compared to the M20. A decrease in charge level of about 7% reduced the system refrigerating capacity by 11.3% with R22 while with the M20 refrigerant mixture it reduces by 6.9% only. Similarly an overcharge by 7% reduces the refrigerating capacity of the system by 13.8% with R22 while with M20 it reduces by 6.5% only. Thus M20 is less sensitive to charge deviations. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20339  相似文献   

5.
The commonly used refrigerant in unitary type air conditioners is R22 and its phase out schedule in developing countries is to commence from 2015. Many alternatives to R22 are found in published literature in which R407C has similar characteristics to those of R22 except for its zeotropic nature. However, R407C which is an HFC is made compatible with the mineral oil lubricant in the system compressor by the addition of 20% of HC. This HFC/HC mixture called the M20 refrigerant mixture is reported to be a retrofit refrigerant for R22. Though its latent heat value is greater than that of R22, its refrigerating capacity is lower when it is used to retrofit R22 window air conditioners. Hence, a heat transfer analysis was conducted in the evaporator of a room air conditioner, for practically realized heat flux conditions during standard performance testing. The tests were conducted as per the BIS and ASHRAE standards. Kattan–Thome–Favrat maps are used to confirm the flow patterns, which prevail inside the fin‐and‐tube evaporator in the tested operating conditions. It is revealed that the heat transfer coefficient/heat fluxes are poorer for M20 because of the lower mass flow rate and higher vapor fraction at the entry of the evaporator than that of R22 in the prevailing operating conditions. The heat transfer coefficients of the M20 refrigerant mixture under various test conditions are lower in the range of 14% to 56% than those of R22. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20299  相似文献   

6.
This paper discusses the use of propane (HC-290) as a safe and energy efficient alternative to HCFC-22 in a typical split air conditioner with nominal cooling capacities up to 5.1 kW. Initially split air conditioner performance is simulated for cooling capacity, energy efficiency ratio (EER), and refrigerant charge. Tests were conducted for different test cases in a psychrometric test chamber with HCFC-22 and HC-290. The test conditions considered are as per Indian Standards, IS 1391 (1992) Part I. The various parameters considered were based on simulated performance with the objective to achieve maximum EER for the desired cooling capacity. As the flammability is an issue for HC-290, the reduction of HC-290 charge was another objective. Two different types of condensers, first with smaller size tubing and another parallel flow condenser (PFC) or minichannel condenser were used in order to reduce HC-290 charge. For HC-290, the highest EER achieved was 3.7 for cooling capacity 4.90 kW for a refrigerant charge of 360 g.The important safety aspects of using HC-290 in air conditioner are discussed. The refrigerant charge as per EN 378 for different cooling capacities and room sizes is also considered.  相似文献   

7.
In this experimental study, a porous material is used inside the pipes of the evaporator as the main heat exchanging device in the air conditioning cycle. The used porous material consists of stainless steel balls of different diameters. As a case study, refrigerant R454B, which is a drop-in replacement to refrigerant R410A, is used as a working fluid in the air conditioner thermodynamic cycle. Four different porosities were used during the experimental tests; 100% (empty tube), 46%, 40%, and 33%. This study investigated the influence of variation of porosity as well as outside air temperature and refrigerant evaporation temperature on the cycle coefficient of performance, evaporation capacity, pressure drop, and power consumption during the compression process. Measured evaporation temperatures and indoor temperatures during tests were in the range of 1.5–12°C and 18–25°C, respectively. The use of porous material in the evaporation heat exchanger resulted in a considerable increase in the cycle evaporation capacity and coefficient of performance. Varying porosity from 100% to 33% resulted in an average percent increase of cycle evaporation capacity and coefficient of performance by 48.8% and 84.3%, respectively. Also, decreasing porosity from 100% to 33% resulted in an average percent increase in power consumption during the compression process by about 27%. An average percent increase of power consumption of compressor by about 25.9% is also reported, when evaporation temperature increased from 1.5°C to 12°C. Increasing outside air temperature from 27.1°C to 39.5°C resulted in decreasing evaporation capacity and coefficient of performance by 35.2% and 34.5%, respectively, and in increasing compressor power consumption by about 14.3%. A considerable pressure drop was recorded during the evaporation process when using porous material. The volumetric evaporation capacity, as well as compressor discharge temperature, are increased by increasing evaporating temperature and by decreasing evaporator porosity. The increase in air ambient temperature resulted in a considerable increase in refrigerant mass flow rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号