首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The present work presents a simple model for matching coiled capillary tubes and the refrigerant charge in a split air conditioner when the other components are fixed. The system model is composed of sub-models for the key components, i.e., a lumped model for the compressor, zone models for the condenser and the evaporator, and a four flow region distributed model for the coiled adiabatic capillary tube in series with the liquid tube. The C-M-N method is employed to calculate the friction factors in the coiled capillary tube. HCFC22 and HC290 are used for the simulations. The comparison of the model prediction with experimental data shows the errors are less than ±5% except for the mass flow rate with a maximum deviation of 8.63%. The results confirm that both the cooling capacity and input power are slightly reduced when HCFC22 is replaced by HC290 with the coiled capillary tube and refrigerant charge matched to the HC290 refrigerant. The results also show that when coil diameter is reduced from 0.3 m to 0.04 m, the capillary tube length is reduced by about 10% for both HCFC22 and HC290. This model can be used to design components for small air conditioning systems using HCFC22 and HC290.  相似文献   

2.
This paper presents the effects of various geometries of helical capillary tubes on the flow characteristics of alternative refrigerants flowing through adiabatic helical capillary tubes. The theoretical model is based on the conservation of mass, energy and momentum of fluids in the capillary tube. The two-phase flow model developed was based on a homogenous flow assumption. The model was validated by comparing it with the experimental data of published in literature for R-22, particularly various pairs of refrigerants. It was found conventional refrigerants had lower capillary lengths than alternative refrigerants. For all pairs, the numerical results showed that the traditional refrigerants consistently gave lower pressure drops for both single-phase and two-phase flows, which resulted in longer tube lengths. The results show that coil diameter variation (less than 300 mm) for helical capillary tube geometries affected the length of helical capillary tubes. However, pitch variation (more than 300 mm) had no significant effect on the length of helical capillary tubes. This adiabatic helical capillary tube model can be used to integrate system models working with alternative refrigerants for design and optimisation.  相似文献   

3.
R22 has been generally accepted as the most suitable refrigerant for air conditioners, due to its favorable thermodynamic properties. However, R22 is a controlled substance under the Montreal protocol. M20 is a HFC/HC refrigerant mixture that can be used as a substitute for R22. This paper presents experimental investigation on the performance comparison of a window air conditioner operated with the M20 tested under different refrigerant charge levels and outdoor conditions against that with R22. Experiments were conducted in accordance with BIS procedure in a psychrometric test facility. Refrigerant charge in the air conditioner was systematically varied from 900 to 1600 g in steps of 50 g for R22 and 697 to 1279 g in steps of 39 g [equivalent to 50 g of R22] for the M20. At each charge levels, the outdoor room conditions were changed in accordance with BIS standards. It is observed that R22 is more sensitive to deviations in charge levels as compared to the M20. A decrease in charge level of about 7% reduced the system refrigerating capacity by 11.3% with R22 while with the M20 refrigerant mixture it reduces by 6.9% only. Similarly an overcharge by 7% reduces the refrigerating capacity of the system by 13.8% with R22 while with M20 it reduces by 6.5% only. Thus M20 is less sensitive to charge deviations. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20339  相似文献   

4.
The commonly used refrigerant in unitary type air conditioners is R22 and its phase out schedule in developing countries is to commence from 2015. Many alternatives to R22 are found in published literature in which R407C has similar characteristics to those of R22 except for its zeotropic nature. However, R407C which is an HFC is made compatible with the mineral oil lubricant in the system compressor by the addition of 20% of HC. This HFC/HC mixture called the M20 refrigerant mixture is reported to be a retrofit refrigerant for R22. Though its latent heat value is greater than that of R22, its refrigerating capacity is lower when it is used to retrofit R22 window air conditioners. Hence, a heat transfer analysis was conducted in the evaporator of a room air conditioner, for practically realized heat flux conditions during standard performance testing. The tests were conducted as per the BIS and ASHRAE standards. Kattan–Thome–Favrat maps are used to confirm the flow patterns, which prevail inside the fin‐and‐tube evaporator in the tested operating conditions. It is revealed that the heat transfer coefficient/heat fluxes are poorer for M20 because of the lower mass flow rate and higher vapor fraction at the entry of the evaporator than that of R22 in the prevailing operating conditions. The heat transfer coefficients of the M20 refrigerant mixture under various test conditions are lower in the range of 14% to 56% than those of R22. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20299  相似文献   

5.
This paper discusses the use of propane (HC-290) as a safe and energy efficient alternative to HCFC-22 in a typical split air conditioner with nominal cooling capacities up to 5.1 kW. Initially split air conditioner performance is simulated for cooling capacity, energy efficiency ratio (EER), and refrigerant charge. Tests were conducted for different test cases in a psychrometric test chamber with HCFC-22 and HC-290. The test conditions considered are as per Indian Standards, IS 1391 (1992) Part I. The various parameters considered were based on simulated performance with the objective to achieve maximum EER for the desired cooling capacity. As the flammability is an issue for HC-290, the reduction of HC-290 charge was another objective. Two different types of condensers, first with smaller size tubing and another parallel flow condenser (PFC) or minichannel condenser were used in order to reduce HC-290 charge. For HC-290, the highest EER achieved was 3.7 for cooling capacity 4.90 kW for a refrigerant charge of 360 g.The important safety aspects of using HC-290 in air conditioner are discussed. The refrigerant charge as per EN 378 for different cooling capacities and room sizes is also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号