首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 743 毫秒
1.
In this study, the potential of wind energy and assessment of wind energy systems in Turkey were studied. The main purpose of this study is to investigate the wind energy potential and future wind conversion systems project in Turkey. The wind energy potential of various regions was investigated; and the exploitation of the wind energy in Turkey was discussed. Various regions were analyzed taking into account the wind data measured as hourly time series in the windy locations. The wind data used in this study were taken from Electrical Power Resources Survey and Development Administration (EIEI) for the year 2010. This paper reviews the assessment of wind energy in Turkey as of the end of May 2010 including wind energy applications. Turkey's total theoretically available potential for wind power is around 131,756.40 MW and sea wind power 17,393.20 MW annually, according to TUREB (TWEA). When Turkey has 1.5 MW nominal installed wind energy capacity in 1998, then this capacity has increased to 1522.20 MW in 2010. Wind power plant with a total capacity of 1522.20 MW will be commissioned 2166.65 MW in December 2011.  相似文献   

2.
In this study, wind characteristic and wind energy potential of the Uluda? skinning which is located in the south Marmara region of Turkey were analyzed using the wind speed data collected during the period 2000–2006. The wind speed distribution curves of Uluda?-Bursa were obtained by using the Weibull and Rayleigh probability density functions. The average Weibull shape parameter k and scale parameter c were found as 1.78 and 7.97 m/s for the period 2000–2006. The yearly mean wind speed in Uluda?-Bursa was obtained as 7.08 m/s for period of 7 years. A technical and economic assessment has been made of electricity generation from four wind turbines having capacity of (600, 1000, 1500 and 2000 kW). The yearly energy output, capacity factor and the electrical energy cost of kW h produced by the three different turbines were calculated. The cost of each kW h produced using the chosen wind turbines in Uluda?-Bursa were found to between 0.255 and 0.306 $/kW h.  相似文献   

3.
The negative effects of non-renewable fossil fuels have forced scientists to draw attention to clean energy sources which are both environmentally more suitable and renewable. Although Turkey enjoys fairly high wind energy potential, an investigation and exploitation of this source is still below the desired level. In this study which is a preliminary study on wind energy cost in Central Anatolian-Turkey, the wind energy production using time-series approach and the economic evaluation of various wind energy conversion systems (WECSs) enjoying the 2.5, 5, 10, 20, 30, 50, 100 and 150 kW rated power size using the levelised cost of electricity (LCOE) method for the seven different locations in Central Turkey were estimated. In addition, effects of escalation ratio of operation and maintenance cost and annual mean speed on LCOE are taken into account. The wind speed data for a period between 2000 and 2006 years were taken from Turkish State Meteorological Service (TSMS). According to the result of the calculations, it is shown that the WECS of capacity 150 kW produce the energy output 120,978 kWh per year in the Case-A (Pinarbasi) for hub height 30 m and also the LCOE varies in the range of 0.29–30.0 $/kWh for all WECS considered.  相似文献   

4.
The variability of interconnected wind plants   总被引:1,自引:0,他引:1  
We present the first frequency-dependent analyses of the geographic smoothing of wind power’s variability, analyzing the interconnected measured output of 20 wind plants in Texas. Reductions in variability occur at frequencies corresponding to times shorter than ∼24 h and are quantified by measuring the departure from a Kolmogorov spectrum. At a frequency of 2.8×10−4 Hz (corresponding to 1 h), an 87% reduction of the variability of a single wind plant is obtained by interconnecting 4 wind plants. Interconnecting the remaining 16 wind plants produces only an additional 8% reduction. We use step change analyses and correlation coefficients to compare our results with previous studies, finding that wind power ramps up faster than it ramps down for each of the step change intervals analyzed and that correlation between the power output of wind plants 200 km away is half that of co-located wind plants. To examine variability at very low frequencies, we estimate yearly wind energy production in the Great Plains region of the United States from automated wind observations at airports covering 36 years. The estimated wind power has significant inter-annual variability and the severity of wind drought years is estimated to be about half that observed nationally for hydroelectric power.  相似文献   

5.
In this study wind resources evaluation and wind energy assessment of the São João do Cariri (SJC) in Paraiba (PB) state situated in Brazilian northeast were analyzed during the period 2006/2009. Wind speed (V, m/s), wind direction and air temperature (T, °C) at 25 m and 50 m were collected from SONDA (Sistema de Organização Nacional de Dados Ambientais) meteorological station (38°N 7°E). The average wind speed and temperature for 25 m and 50 m were found 4.74 m/s, 24.46 °C and 5.31 m/s 24.25 °C respectively. The wind speed predominate direction found were SSE (165°) from both 25 m and 50 m heights. The wind speed distribution curve was obtained using the Weibull probability density function through the WAsP program, the values of Weibull shape (K), scale (A, m/s) and Weibull fit wind speed and power wind density (P, W/m2) were found 2.54, 5.4 m/s, 4.76 m/s and 103 W/m2 for 25 m wind height measurements and 2.59, 6.0 m/s, 5.36 m/s and 145 W/m2 for 50 m wind height measurements. The cost (€/kWh) from electrical wind energy obtained by wind turbine generation, at 25 m height, was found 0.046 by using 300 kW power rated wind turbine, in the best scenario, with an associate Cf of 14.5%.  相似文献   

6.
According to the EU Directive 2001/77/EC 7% of all electricity production is to be generated from renewable energy sources (RES) in Lithuania in 2010. Electricity production from RES is determined by hydro, biomass and wind energy resources in Lithuania. Further development of hydro power plants is limited by environmental restrictions, therefore priority is given to wind energy development. The aim of this paper is to show estimation of the maximum wind power penetration in the Lithuanian electricity system using such criteria as wind potential, possibilities of the existing electricity network, possible environmental impact, and social and economical aspects. Generalization of data from the meteorological stations and special measurements shows that the highest average wind speed in Lithuanian territory is in the coastal region and at 50 m above ground level reaches 6.4 m/s. In regard to wind resource distribution in this region, arrangement of electricity grid and environment protection requirements, six zones have been determined for wind power plant construction. Calculations have shown that the largest total installed capacity of wind farms, which could cause no significant increase in power transmission expenses, is 170 MW. The threshold, which cannot be passed without capital reconstruction of electricity network, is 500 MW of total capacity of wind farms.  相似文献   

7.
Solar and wind energies are likely to play an important role in the future energy generation in Oman. This paper utilizes average daily global solar radiation and sunshine duration data of 25 locations in Oman to study the economic prospects of solar energy. The study considers a solar PV power plant of 5-MW at each of the 25 locations. The global solar radiation varies between slightly greater than 4 kWh/m2/day at Sur to about 6 kWh/m2/day at Marmul while the average value in the 25 locations is more than 5 kWh/m2/day. The results show that the renewable energy produced each year from the PV power plant varies between 9000 MWh at Marmul and 6200 MWh at Sur while the mean value is 7700 MWh of all the 25 locations. The capacity factor of PV plant varies between 20% and 14% and the cost of electricity varies between 210 US$/MWh and 304 US$/MWh for the best location to the least attractive location, respectively. The study has also found that the PV energy at the best location is competitive with diesel generation without including the externality costs of diesel. Renewable energy support policies that can be implemented in Oman are also discussed.  相似文献   

8.
In this study, wind characteristics were analyzed using the wind speed data collected of the six meteorological stations in Turkey during the period 2000–2006. The annual mean wind speed of the six stations (Erzurum, Elaz??, Bingöl, Kars, Manisa and Ni?de) is obtained as 8.7, 8.5, 5.9, 6.9, 7.4 and 8.0 m/s at 10 m height, respectively. The mean annual value of Weibull shape parameter k is between 1.71 and 1.96 while the annual value of scale parameter c is between 6.81 and 9.71 m/s. A technical assessment has been made of electricity generation from four wind turbines having capacity of (600 kW, 1000 kW, 1500 kW and 2000 kW). The yearly energy output and capacity factor for the four different turbines were calculated.  相似文献   

9.
Climate change, pollution, and energy insecurity are among the greatest problems of our time. Addressing them requires major changes in our energy infrastructure. Here, we analyze the feasibility of providing worldwide energy for all purposes (electric power, transportation, heating/cooling, etc.) from wind, water, and sunlight (WWS). In Part I, we discuss WWS energy system characteristics, current and future energy demand, availability of WWS resources, numbers of WWS devices, and area and material requirements. In Part II, we address variability, economics, and policy of WWS energy. We estimate that ∼3,800,000 5 MW wind turbines, ∼49,000 300 MW concentrated solar plants, ∼40,000 300 MW solar PV power plants, ∼1.7 billion 3 kW rooftop PV systems, ∼5350 100 MW geothermal power plants, ∼270 new 1300 MW hydroelectric power plants, ∼720,000 0.75 MW wave devices, and ∼490,000 1 MW tidal turbines can power a 2030 WWS world that uses electricity and electrolytic hydrogen for all purposes. Such a WWS infrastructure reduces world power demand by 30% and requires only ∼0.41% and ∼0.59% more of the world's land for footprint and spacing, respectively. We suggest producing all new energy with WWS by 2030 and replacing the pre-existing energy by 2050. Barriers to the plan are primarily social and political, not technological or economic. The energy cost in a WWS world should be similar to that today.  相似文献   

10.
This paper presents a technical assessment of wind power potential for seven locations in Jordan using statistical analysis to determine the wind characteristic based on the measured wind data. Rayleigh distribution is used to model the monthly average data and used to estimate the wind power in the selected locations. Energy calculations, capacity factors and cost of wind energy production were determined for the selected locations with wind machines of different sizes ranging between 1.65 MW and 3 MW. The quantitative estimates of the technical and economic potential are presented graphically. Rayleigh parameter is adjusted to the hub height using one seventh power law to estimate the power output of the machine. The energy cost analyses show that all selected sites have high economic potential with unit cost less than $0.04/kWh of electricity. The lowest unit cost per kWh is obtained by using GE 2.5 MW at Tafila site. Finally, the results of this study reveal that Jordan has high potential wind energy and its environmental and energy policy targets can be met by exploitation wind energy.  相似文献   

11.
Egypt is one of the Red Sea and Mediterranean countries having windy enough areas, in particular along the coasts. The coastal location Ras Ghareb on the Red Sea has been investigated in order to know the wind power density available for electricity generation. To account for the wind potential variations with height, a new simple estimating procedure was introduced. This study has explicitly demonstrated the presence of high wind power density nearly 900 kW/m2 per year at 100 m of altitude for this region. Indeed, the seasonal wind powers available are comparable to and sometimes higher than the power density in many European cities for wind electricity applications like Vindeby (Denmark) and also America.New technical analysis for wind turbine characteristics have been made using three types of commercial wind turbines possessing the same rotor diameter and rated power to choice the best wind machine suitable for Ras Ghareb station. As per the decreasing the cut-in wind speed for the wind turbine used, the availability factor increases for a given generator. That it could produce more energy output throughout the year for the location.The aim of this research, was to predict the electrical energy production with the cost analysis of a wind farm 150 MW total power installed at Ras Ghareb area using 100 wind turbines model (Repower MD 77) with 1.5 MW rated power. Additionally, this paper developed the methodology for estimating the price of each kWh electricity from the wind farms. Results show that this wind park will produce maximum energy of 716 GWh/year. The expected specific cost equal to 1.5 € cent/kWh is still less than and very competitive price with that produced from the wind farms in Great Britain and Germany and at the international markets of wind power. The important result derived from this study encourages several wind parks with hundreds of megawatts can be constructed at Ras Ghareb region.  相似文献   

12.
For an isolated power system the deployment of a large stock of electrolysers is investigated as a means for increasing the penetrations of wind power plant and zero-carbon thermal power plant. Consideration is given to the sizing and utilization of an electrolyser stock for three electrolyser implementation cases and three operational strategies, installed capacity ranges of 20–100% for wind power and 10–35% for zero-carbon thermal power plant (as proportions of the power system’s maximum electrical demand) were investigated. Relative to wind-hydrogen alone, hydrogen yields are substantially increased especially on low-wind days. The average load placed on fossil-fuelled power plant is substantially decreased (while achieving a virtually flat load profile) and the carbon intensity of electricity can be reduced to values of <0.1 kg CO2/kWhe. The trade-offs between the carbon intensity of the electricity delivered, the carbon intensity of the hydrogen produced and the daily hydrogen yield are explored. For example (on the variable wind day for Strategy C with respective wind power and zero-carbon thermal power penetrations of 100% and 35%), if the carbon intensity of hydrogen is relaxed from 0 to 3 kg CO2/kg H2, the hydrogen yield can be increased from 435 tonnes to 1115 tonnes (which is the energy equivalent of 120% of consumer demand for electricity on that day). The findings suggest that the deployment of electrolysers on both the supply and demand-side of the power system can contribute nationally-significant amounts of zero or low-carbon hydrogen without exceeding the power system’s current maximum system demand.  相似文献   

13.
This paper statistically examine wind characteristics from seven meteorological stations within the North-West (NW) geo-political region of Nigeria using 36-year (1971–2007) wind speed data measured at 10 m height subjected to 2-parameter Weibull analysis. It is observed that the monthly mean wind speed in this region ranges from 2.64 m/s to 9.83 m/s. The minimum monthly mean wind speed was recorded in Yelwa in the month of November while the maximum value is observed in Katsina in the month of June. The annual wind speeds range from 3.61 m/s in Yelwa to 7.77 m/s in Kano. It is further shown that Sokoto, Katsina and Kano are suitable locations for wind turbine installations with annual mean wind speeds of 7.61, 7.45 and 7.77 m/s, respectively. The results also suggest that Gusau and Zaria should be applicable for wind energy development using taller wind turbine towers due to their respective annual mean speeds and mean power density while Kaduna is considered as marginal. In addition, higher wind speeds were recorded in the morning hours than afternoon periods for this region. A technical electricity generation assessment using four commercial wind turbines were carried out. The results indicate that, while the highest annual power is obtained with Nordex N80–2.5 MW as 14233.53 kW/year in Kano, the lowest is in Yelwa having 618.06 kW/year for Suzlon S52. It is further shown that the highest capacity factor is 64.95% for Suzlon S52–600 kW in Kano while the lowest is 3.82% for Vestas V80–2 MW in Yelwa.  相似文献   

14.
The performance of a hybrid wind–solar power plant in southwestern Minnesota is modeled for a 2-yr period using hourly wind and solar insolation data. The wind portion of the plant consists of four interconnected wind farms within a radius of 90 km. The solar component of the plant is a parabolic trough solar thermal electric generating system using a heat transfer fluid that drives a steam turbine. The market value of energy produced, retail value of energy produced, and levelized cost of energy of the hybrid plant are compared to those of an energy equivalent wind-only plant. Results show that adding solar thermal electric generating capacity to a wind farm rather than expanding with additional wind capacity provides cost–benefit trade-offs that will continue to change as the two technologies evolve. At the present time, we find that capital cost and levelized cost of energy favor a wind-only plant while electric load matching favors a hybrid wind–solar plant. Regional differences in the solar resource in the US influence the economic viability of the hybrid plant, and a comparison using the present model is made with one location in the Southwest. The hourly data analysis presented here is a possible tool for evaluating the overall economic feasibility and generating characteristics for a hybrid wind–solar thermal electric power plant for any location with available wind, solar, electric load, and price data.  相似文献   

15.
The aim of this study is to estimate the technical potential of wind energy in Vietnam and discuss strategies for promoting the market penetration of wind energy in the country. For the wind resource assessment, a geographical information system (GIS)- assisted approach has been developed. It is found that Vietnam has a good potential for wind energy. About 31,000 km2 of land area can be available for wind development in which 865 km2 equivalents to a wind power of 3572 MW has a generation cost less than 6 US cents/kWh. The study also proves that wind energy could be a good solution for about 300,000 rural non-electrified households. While wind energy brings about ecological, economic and social benefits, it is only modestly exploited in Vietnam, where the main barrier is the lack of political impetus and a proper framework for promoting renewable energy. The priority task therefore is to set a target for renewable energy development and to find instruments to achieve such a target. The main instruments proposed here are setting feed-in tariff and providing investment incentives.  相似文献   

16.
Wind energy potential in various parts of Turkey is becoming economical due to reductions in the wind turbine costs, and in fossil fuel atmospheric pollution. The global change program imposes restrictions for use of alternative renewable and environmentally friendly energy sources. Wind energy is among such energy potentials and its practical and economical use gain significance day by day. The first wind energy turbine site investigation and wind power application possibility have been presented for the Akhisar area within the eastern provinces of Turkey. Different wind turbine technologies are assessed according to the local wind speed variations. Locally and technologically suitable wind turbines are selected. Finally their locations are decided by expert views and field measurements with the usage of well known WASP software. It is calculated that a minimum of 31436 MWh/year wind can be generated in this site. In the calculations 10% error possibility is allowed.  相似文献   

17.
Egypt is one of the developing countries. The production of electricity in Egypt is basically on petroleum, natural gas, hydro-power and wind energy. The objective of this work to prove the availability of sufficient wind potential in the wide area of deep south Egypt for the operation of wind turbines there. Nevertheless, it gives in general an approximate profile which is useful to the wind parks design for this area. The data used in the calculation are published and analyzed for the first time. The diagrams of the measured wind data for three meteorological stations over a period of two years (wind speed, frequency, direction), wind shear coefficient, the mean monthly and annual wind speed profile for every location are presented. Monthly Weibull parameters, standard deviation and coefficient of variation have been statistically discussed. A comparison of the rose diagrams shows that the wind speed is more persistent and blow over this region of Egypt in two main sectors N and NNW with long duration of frequencies from 67% to 87% over the year with an average wind speed in the range 6.8-7.9 m/s at the three stations. Evaluation of monthly wind energy density at 10 m height by two different methods was carried out. And the final diagram for every site shows no significant difference between them. The annual natural wind energies at 70 m A.G.L. lie between 333 and 377 W/m2 for Dakhla South and Kharga stations, respectively, which is similar to the inland wind potential of Vindeby (Denmark) and some European countries. These results indicate that Kharga and Dakhla South locations are new explored sites for future wind power generation projects.  相似文献   

18.
Adequate recognition of the wind energy potential of coastal states may have far-reaching effects on the development of the energy systems of these countries. This study evaluates wind energy resources in Taiwan with the aid of a geographic information system (GIS), which allows local potentials and restrictions such as climate conditions, land uses, and ecological environments to be considered. The findings unveiled in this study suggest a significant role for offshore wind energy resources, which may constitute between 94% and 98% of overall wind resources in Taiwan. Total power yield from wind energy could reach between 150 and 165 TWh, which would have, respectively, accounted for between 62% and 68% of Taiwan's total power generation of 243 TWh in 2007. Based on the Taiwan's current emission factor of electricity, wind energy has the potential to reduce CO2 emissions by between 94 and 102 million ton per year in Taiwan, which is, respectively, equivalent to 28% and 31% of the national net equivalent CO2 emissions released in 2002. However, the challenge of managing the variability of wind power has to be addressed before the considerable contribution of wind energy to domestic energy supply and CO2 reduction can be realized.  相似文献   

19.
This study presents a techno-economic evaluation on hydrogen generation from a small-scale wind-powered electrolysis system in different power matching modes. For the analysis, wind speed data, which measured as hourly time series in Kirklareli, Turkey, were used to predict the electrical energy and hydrogen produced by the wind–hydrogen energy system and their variation according to the height of the wind turbine. The system considered in this study is primarily consisted of a 6 kW wind-energy conversion system and a 2 kW PEM electrolyzer. The calculation of energy production was made by means of the levelized cost method by considering two different systems that are the grid-independent system and the grid-integrated system. Annual production of electrical energy and hydrogen was calculated as 15,148.26 kWh/year and 102.37 kg/year, respectively. The highest hydrogen production is obtained in January. The analyses showed that both electrical energy and hydrogen production depend strongly on the hub height of wind turbine in addition to the economic indicators. In the grid-integrated system, the calculated levelized cost of hydrogen changes in the range of 0.3485–4.4849 US$/kg for 36 m hub height related to the specific turbine cost. The grid-integrated system can be considered as profitable when the excess electrical energy delivered by system sold to the grid.  相似文献   

20.
The aim of this paper is to review wind speed distribution and wind energy availability in Nigeria and discuss the potential of using this resource for generation of wind power in the country. The power output from a wind turbine is strongly dependent on the wind speed and accurate information about the wind data in a targeted location is essential. The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m2 based on recent reported data. The trend shows that wind speeds are low in the south and gradually increases to relatively high speeds in the north. The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified. Also some of the challenges facing the development of wind energy and suggested solutions were presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号