共查询到20条相似文献,搜索用时 13 毫秒
1.
The use of hydrogen in benzene–water system which combines water electrolysis and hydrogenation in a polymer electrolyte cell was carried out as a means for seasonal storage of electricity. Gas diffusion electrodes were effective in improving coupled reactions of electrochemical benzene hydrogenation and water electrolysis. The reaction kinetics for the electrochemical hydrogenation process using gas diffusion electrodes was investigated by evaluating current efficiency and reaction rate. The results showed that the rate of hydrogen evolution was higher than the rate of benzene hydrogenation and the apparent activation energy of hydrogen evolution was lower than that of benzene hydrogenation. As the electrode potential increased, the hydrogen evolution rate increased. The benzene hydrogenation reaction rate reached a maximum at −0.8 V electrode potential, then decreased slightly. The current efficiency, however, reached its maximum at −0.7 V. Modifying electrodes by adding 0.2 wt% polyethylene glycol (PEG6000) reduced the mass transfer resistance of organic phase (cyclohexane/benzene) and improved the hydrogenation reaction rate. 相似文献
2.
The rate and yield of hydrogen production from the reaction between activated aluminum and water has been investigated. The effect of different parameters such as water–aluminum ratio, water temperature and aluminum particle size and shape was studied experimentally. The aluminum activation method developed in-house involves 1%–2.5% of lithium-based activator which is diffused into the aluminum particles, enabling sustained reaction with tap water or sea water at room temperature. Hydrogen production rates in the range of 200–600 ml/min/g Al, at a yield of about 90%, depending on operating parameters, were demonstrated. The work further studied the application in proton exchange membrane (PEM) fuel cells in order to generate green electric energy, demonstrating theoretical specific electric energy storage that can exceed batteries by 10–20 folds. 相似文献
3.
Priyankan Datta Aranyak Chakravarty Achintya Mukhopadhyay Swarnendu Sen 《Numerical Heat Transfer, Part A: Applications》2018,73(1):17-33
Direct contact condensation (DCC) of steam in subcooled water has paramount importance in many heat transfer devices in different industrial areas like nuclear, thermal, chemical plants. This work aims at the exploration of underlying physics of steam–water DCC in two dimensions using ANSYS FLUENT 14.5. The volume of fluid method is utilized for performing direct simulation of the phenomenon at the phase interface. In this work, thrust is given on the modeling of the interphase heat transfer using interfacial jump approach instead of proposed empirical correlations which have different applicability limits. User-defined functions in the FLUENT software are used for evaluating the interfacial mass transfer rate, thermal gradient across the phase interface, and interface curvature. This study also emphasizes on the prediction of transient temperature field and interface characteristics under different parametric conditions (e.g., variation of water injection velocity and water temperature). Observation reveals that the present condensation model is capable of capturing the transient temperature history as well as the flow regime transition (stratified to slug flow) induced by the interfacial instability. 相似文献
4.
Ádám Révész Marcell Gajdics Lajos K. Varga György Krállics László Péter Tony Spassov 《International Journal of Hydrogen Energy》2014
Ball-milled nanocrystalline Mg2Ni powders were subjected to intense plastic straining by cold rolling or equal-channel angular pressing. Morphological and microstructural evolution during these processes has been investigated by scanning electron-microscopy and X-ray diffraction line profile analysis, respectively. Complementary hydrogen absorption experiments in a Sieverts' type apparatus revealed that there exists some correlation between the micro- and nanostructure and hydrogen storage properties of the severely deformed materials. 相似文献
5.
Phase change materials (PCM) have been repeatedly proposed for use in solar domestic hot water (DHW) systems. PCM storage designs have been proposed, but no detailed evaluation has been made of the actual contribution of the PCM to the total heat storage under typical end-use conditions. In this work annual simulations were done to compare the performance of a storage tank with PCM to a standard tank without PCM. A model was constructed to describe the heat storage tank with and without PCM, the collector, pump, controller and auxiliary heater. Realistic environmental conditions and typical end-user requirements were imposed. Annual simulations were carried out for different sites, load profiles, different PCM volume fractions, and different kinds of PCM. The results of all simulation scenarios indicate that, contrary to expectations, the use of PCM in the storage tank does not yield a significant benefit in energy provided to the end-user. The main reason for this undesirable effect is found to be increased heat losses during nighttime due to reheating of the water by the PCM. 相似文献
6.
7.
In order to respond to climatic change, many efforts have been made to reduce harmful gas emissions. According to energy policies, an important goal is the implementation of renewable energy sources, as well as electrical and oil combustion savings through energy conservation. This paper focuses on an extensive review of the technologies developed, so far, for central solar heating systems employing seasonal sensible water storage in artificial large scale basins. Among technologies developed since the late 1970s, the use of underground spaces as an energy storage medium – Underground Thermal Energy Storage (UTES) – has been investigated and closely observed in experimental plants in many countries, most of them, as part of government programmes. These projects attempt to optimise technical and economic aspects within an international knowledge exchange; as a result, UTES is becoming a reliable option to save energy through energy conservation. Other alternatives to UTES include large water tanks and gravel–water pits, also called man-made or artificial aquifers. This implies developing this technology by construction and leaving natural aquifers untouched. The present article reviews most studies and results obtained in this particular area to show the technical and economical feasibility for each system and specifics problems occurred during construction and operation. Advantages and disadvantages are pointed out to compare both alternatives. The projects discussed have been carried out mainly in European states with some references to other countries. 相似文献
8.
Thomas W. Navrkal Hunter R. Flodman Delmar C. Timm 《International Journal of Heat and Mass Transfer》2012,55(1-3):166-178
The dynamic simulation of an integrated, double pipe heat exchanger network was validated through experimentation. A steam–water, concentric tube, heat exchanger was coupled to a water–water preheater. When the preheater was configured for cocurrent flow with equal fluid velocities in its annulus and core, Lagrangian-based derivations yielded analytical solutions that accurately predicted observed temperature dynamics. When the preheater was configured for countercurrent flow with distinct fluid velocities in its annulus and core, analytical solutions for the heater and connecting tubing were coupled with Eulerian based numerical solutions for the preheater. Programming used Mathcad. Nonlinear regression analysis of steady state data was used to determine system parameters. The significance of time delays through the integration of unit operations is illustrated. 相似文献
9.
In this work, ageing of Mg/Mg2Ni mixtures was investigated. It was observed that hydrogen desorption kinetics from hydrided Mg/Mg2Ni was improved considerably after ageing at room temperature for several days. The ageing was interpreted in terms of phase changes. Even after almost complete hydridation, besides two main phases – MgH2 and Mg2NiH4 – a certain amount of Mg2NiH0.3 was always present. Similar as Mg2NiH4 phase, Mg2NiH0.3 islands were located on the surface of MgH2 grains. Mg2NiH0.3 transformed into Mg2NiH4 at the expense of hydrogen from an adjoining MgH2 grain. In such a way, a clean double layer (Mg)–Mg2NiH4 was formed, acting as a gate for easy hydrogen desorption from MgH2. It was found that the Mg2NiH4 phase was slightly enriched on non-twinned modification LT1 during the ageing. As a result, both the creation of (Mg)–Mg2NiH4 desorption bridges and enrichment of Mg2NiH4 on LT1 during the ageing facilitated onset of rapid hydrogen desorption. 相似文献
10.
N. Wang H.X. Meng Y.M. Dong Z.L. Jia L.J. Gao Y.J. Chai 《International Journal of Hydrogen Energy》2014
Hydrogen generation based on the corrosion of aluminum has been evaluated with regard to its possible application in on-board mobile and portable power sources. In this study, the aluminum–water reaction induced by Co–Fe–B has been examined. SEM results have shown that the chain-like Co–Fe–B catalyst forms a network structure under the influence of an external magnetic field. Co–Fe–B is actually a mixture of cubic Fe and amorphous Co–Fe–B. The Fe content in Co–Fe–B increases with increasing mass of FeCl3 used in its synthesis. An increase in the Fe content in Co–Fe–B shortens the induction time and improves the amount of hydrogen generated owing to the formation of Fe/Al, Co–Fe–B/Al, and Co–Fe–B/Fe micro galvanic cells. However, an increase in the Co–Fe–B content slightly decreases the amount of hydrogen generated owing to its agglomeration and oxidation. With increasing temperature, both the reaction rate and the amount of hydrogen generated are improved. The activation energy of this reaction, calculated from the maximum reaction rates at different temperatures, is 40 kJ mol−1. Hydrogen is rapidly generated, without an induction time, upon the addition of consecutive batches of Al, because the occurrence of the high concentration of OH− ions effectively accelerates the corrosion of Al. 相似文献
11.
Mg1.5Ti0.5−xZrxNi (x = 0, 0.1, 0.2, 0.3, 0.4), Mg1.5Ti0.3Zr0.1Pd0.1Ni and Mg1.5Ti0.3Zr0.1Co0.1Ni alloys were synthesized by mechanical alloying and their electrochemical hydrogen storage characteristics were investigated. X-ray diffraction studies showed that all the replacement elements (Ti, Zr, Pd and Co) perfectly dissolved in the amorphous phase and Zr facilitated the amorphization of the alloys. When the Zr/Ti ratio was kept at 1/4 (Mg1.5Ti0.4Zr0.1Ni alloy), the initial discharge capacity of the alloy increased slightly at all the ball milling durations. The further increase in the Zr/Ti ratio resulted in reduction in the initial discharge capacity of the alloys. The presence of Zr in the Ti-including Mg-based alloys improved the cyclic stability of the alloys. This action of Zr was attributed to the less stable and more porous characteristics of the barrier hydroxide layer in the presence of Zr due to the selective dissolution of the disseminated Zr-oxides throughout the hydroxide layer on the alloy surface. Unlike Co, the addition of Pd into the Mg–Ti–Zr–Ni type alloy improved the alloy performance significantly. The positive contribution of Pd was assumed to arise from the facilitated hydrogen diffusion on the electrode surface in the presence of Pd. As the Zr/Ti atomic ratio increased, the charge transfer resistance of the alloy decreased at all the depths of discharges. Co and Pd were observed to increase the charge transfer resistance of the Mg–Ti–Zr–Ni alloys slightly. 相似文献
12.
The hydrogen storage properties of NbxHf(1−x)/2Ni(1−x)/2 (x = 15.6, 40) alloys were investigated with respect to their hydrogen absorption/desorption, thermodynamic, and dynamic characteristics. The PCT curves show that all the specimens can absorb hydrogen at 303 K, 373 K, 423 K, 473 K, 523 K, 573 K, and 673 K, but they couldn't desorb hydrogen below 373 K. The maximum hydrogen absorption capacity reaches 1.23 wt.% for Nb15.6Hf42.2Ni42.2 and 1.48 wt.% for Nb40Hf30Ni30 at 303 K at a pressure of 3 MPa. When the temperature was increased, the hydrogen absorption capacities significantly decreased. However, the hydrogen equilibrium pressure increased. When the temperature exceeded 523 K, the hydrogen equilibrium pressure disappeared. When niobium content was increased, the kinetic properties of hydrogen absorption/desorption improved. The results from the microstructure analysis show that both alloys consist of the BCC Nb-based solid solution phase, the Bf-HfNi intermetallic phase, and the eutectic phase {Bf-HfNi + BCC Nb-based solid solution}. When the Nb content was increased, the volume fraction and Nb content in the Nb-based solid solution phase increased. Thus, the improved kinetics is related to the increase in the primary BCC Nb-based solid solution in the Nb40Hf30Ni30 alloy. The kinetic mechanisms of hydrogen absorption/desorption in these two alloys are found to obey the chemical reaction mechanism at all temperatures tested. 相似文献
13.
Kun Luo Yongfeng LiuFenghuai Wang Mingxia GaoHongge Pan 《International Journal of Hydrogen Energy》2009
Hydrogen-storage properties and mechanisms of a novel Li–Al–N ternary system were systematically investigated by a series of performance evaluation and structural examinations. It is found that ca. 5.2 wt% of hydrogen is reversibly stored in a Li3N–AlN (1:1) system, and the hydrogenated product is composed of LiNH2, LiH, and AlN. A stepwise reaction is ascertained for the dehydrogenation of the hydrogenated Li3N–AlN sample, and AlN is found reacting only in the second step to form the final product Li3AlN2. The calculation of the reaction enthalpy change indicates that the two-step dehydrogenation reaction is more thermodynamically favorable than any one-step reaction. Further investigations exhibit that the presence of AlN in the LiNH2–2LiH system enhances the kinetics of its first-step dehydrogenation with a 10% reduction in the activation energy due likely to the higher diffusivity of lithium and hydrogen within AlN. 相似文献
14.
15.
The new La8Fe28B24-, La15Fe77B8- and La17Fe76B7-type alloys have multiphase structures including LaNi5, La3Ni13B2 and (Fe, Ni) phases. The amount of La3Ni13B2 phase increased and that of (Fe, Ni) phase decreased with an increasing La/(Fe + B) atomic ratio. The measurement of P–C–I curves revealed that the maximum hydrogen capacity exceeded 1.12 wt% at 313 K in the pressure range of 10−3 MPa–2.0 MPa. The alloys exhibited good absorption/desorption kinetics at room temperature, and electrochemical experiments showed that all of the alloy electrodes exhibited good activation characteristics, high-rate dischargeability (HRD) and low-temperature (233 K) dischargeability (LTD). 相似文献
16.
《International Journal of Hydrogen Energy》2022,47(63):27059-27070
In this paper, the Mg95-X-Nix-Y5 (x = 5, 10, 15) alloy were prepared by vacuum induction melting. The X-ray diffraction was used to analytical phase composition in different states, and the Scanning Electron Microscope and Transmission Electron Microscope were used to characterize the microstructure and crystalline state. Meanwhile, the kinetic properties of isothermal hydrogen adsorption and desorption at different temperatures also were tested by the Sievert isometric volume method. The results indicate that the hydrogenated Mg–Ni–Y samples is a nanocrystalline structure consists of MgH2, Mg2NiH4, and YH3 phases. And, the in-situ formed YH3 phase not decompose in the process of dehydrogenation and evenly dispersed in the mother alloy, which plays a paly a positive the catalytic role for the reversible cyclic reaction of Mg and Mg2Ni phases. In addition, the Ni elements are effectively to improve the thermodynamic properties of the Mg-based hydrogen storage alloy, the desorption enthalpy of the Ni5, Ni10, and Ni15 samples successively decrease to 84.5, 69.1, and 63.5 kJ/mol H2. The hydrogen absorption and desorption kinetics of the Mg–Ni–Y alloy are improved obviously with the increase of Ni content, especially for Mg80Ni15Y5 alloy, which the optimal hydrogenated temperature is reduced to 200 °C, and the 90% of the maximum hydrogen storage capacity can be absorbed within 1 min, about 5.4 wt % H2. Besides, the dehydrogenated activation energy of the Mg80Ni15Y5 alloy also is reduced to 67.0 kJ/mol, and it can completely release hydrogen at 320 °C within 5 min, which is almost reached the hydrogen desorption capability of Ni5 alloy at 360 °C. This means that Ni element is a very positive element to reduce the hydrogen desorption temperature. 相似文献
17.
The aim of this work is to investigate metal–hydride transformation in Magnesium (Mg) nanoparticles decorated by Nickel (Ni). The samples were synthesized by Inert Gas Condensation: Mg single crystal nanoparticles were deposited on a metal substrate and subsequently their surface was exposed to evaporation of Ni. Structural analysis was made by Synchrotron Radiation Powder X-ray Diffraction and thermodynamic measurements by Sieverts apparatus. Ni decoration significantly improves the hydrogen release and uptake kinetics of the nanoparticles. The results connect the formation of Mg2Ni and Mg2NiH4 phases to the enhancement of hydrogen sorption properties. 相似文献
18.
A.D. Rud A.M. Lakhnik V.G. Ivanchenko V.N. Uvarov A.A. Shkola V.A. Dekhtyarenko L.I. Ivaschuk N.I. Kuskova 《International Journal of Hydrogen Energy》2008
The effect of different kinds of carbon on the hydrogen sorption kinetics by magnesium–carbon composites was analyzed. To prepare magnesium-based composites by ball milling, graphite and carbon nanomaterials (hereinafter CNM) obtained by the electroexplosion technique were used. Phase composition and structure state of the as-milled and hydrogenated magnesium–carbon and magnesium–nickel–carbon composites have been investigated. It was found the crystallite size in the Mg–CNM composite is smaller in comparison with the magnesium–graphite and magnesium–graphite–nickel mixtures. The CNM additives to magnesium essentially improve the hydrogen sorption kinetics. It results in a reduction of hydrogen sorption temperature. The noticeable hydrogen absorption took place already at a temperature of 363 K. The hydrogen capacity was about 5 wt% for magnesium ball milled with CNM additives. 相似文献
19.
Serge Nyallang Nyamsi Mykhaylo V. Lototskyy Volodymyr A. Yartys Giovanni Capurso Moegamat Wafeeq Davids Sivakumar Pasupathi 《International Journal of Hydrogen Energy》2021,46(36):19046-19059
MgH2-based hydrogen storage materials are promising candidates for solid-state hydrogen storage allowing efficient thermal management in energy systems integrating metal hydride hydrogen store with a solid oxide fuel cell (SOFC) providing dissipated heat at temperatures between 400 and 600 °C. Recently, we have shown that graphite-modified composite of TiH2 and MgH2 prepared by high-energy reactive ball milling in hydrogen (HRBM), demonstrates a high reversible gravimetric H storage capacity exceeding 5 wt % H, fast hydrogenation/dehydrogenation kinetics and excellent cycle stability. In present study, 0.9 MgH2 + 0.1 TiH2 +5 wt %C nanocomposite with a maximum hydrogen storage capacity of 6.3 wt% H was prepared by HRBM preceded by a short homogenizing pre-milling in inert gas. 300 g of the composite was loaded into a storage tank accommodating an air-heated stainless steel metal hydride (MH) container equipped with transversal internal (copper) and external (aluminium) fins. Tests of the tank were carried out in a temperature range from 150 °C (H2 absorption) to 370 °C (H2 desorption) and showed its ability to deliver up to 185 NL H2 corresponding to a reversible H storage capacity of the MH material of appr. 5 wt% H. No significant deterioration of the reversible H storage capacity was observed during 20 heating/cooling H2 discharge/charge cycles. It was found that H2 desorption performance can be tailored by selecting appropriate thermal management conditions and an optimal operational regime has been proposed. 相似文献
20.
《International Journal of Hydrogen Energy》2022,47(54):22893-22900
In the present investigation, we discussed the synthesis, structural and hydrogen storage behavior of high-entropy Ti–Zr–V–Cr–Ni equiatomic intermetallic alloy. This alloy was synthesized by arc melting in an argon atmosphere where base pressure was in the order of 10?5 atm before purging with argon gas. The X-ray diffraction study revealed that the alloy is C14 type hexagonal Laves phase. The pressure composition isotherms (PCI) of this alloy were investigated with pressure ranges at 0–40 atmosphere. The total hydrogen storage capacities were found to be 1.52 wt%. The reversible hydrogen storage capacity was quite stable and only slight decreases in the storage capacity was observed after 10 cycles during hydrogen soaking. The demonstrations of hydrogen storage capacity of the Ti–Zr–V–Cr–Ni equiatomic alloy were thus established, indicating the future potential of developing this class of high entropy intermetallic based materials for hydrogen storage. 相似文献