首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cylindrical compacts of magnetite were isothermally reduced at 773–1273 K with pure H2 or H2–H2O mixtures. The initial reduction rates increased with temperature and partial pressures of H2 in the H2–H2O mixtures. However, with progressing reduction, a dense iron layer formed around the wüstite grains and the rate significantly reduced. In this regime, solid state oxygen diffusion through the dense iron layer was rate limiting. This retardation of reduction occurred at degrees of reduction of 51–89%, depending on the temperature and H2 partial pressure, which has a linear relationship with the dimensionless kinetic parameter, k1mixed/k2mixed, (k1mixed, k2mixed: contribution of gaseous mass transport (GMT) and interfacial chemical reaction (ICR) to the reduction rate, respectively) in the reaction-regime controlled by a combination of both mechanisms. However, under certain conditions (H2, H2–10%H2O, 773 K//H2–10, 20%H2O, 873 K//H2–20%H2O, 973 K) the retardation was absent because of the formation of a microporous iron layer product.  相似文献   

2.
Laminar burning velocities of CO–H2–CO2–O2 flames were measured by using the outwardly spherical propagating flame method. The effect of large fraction of hydrogen and CO2 on flame radiation, chemical reaction, and intrinsic flame instability were investigated. Results show that the laminar burning velocities of CO–H2–CO2–O2 mixtures increase with the increase of hydrogen fraction and decrease with the increase of CO2 fraction. The effect of hydrogen fraction on laminar burning velocity is weakened with the increase of CO2 fraction. The Davis et al. syngas mechanism can be used to calculate the syngas oxyfuel combustion at low hydrogen and CO2 fraction but needs to be revised and validated by additional experimental data for the high hydrogen and CO2 fraction. The radiation of syngas oxyfuel flame is much stronger than that of syngas–air and hydrocarbons–air flame due to the existence of large amount of CO2 in the flame. The CO2 acts as an inhibitor in the reaction process of syngas oxyfuel combustion due to the competition of the reactions of H + O2 = O + OH, CO + OH = CO2 + H and H + O2(+M) = HO2(+M) on H radical. Flame cellular structure is promoted with the increase of hydrogen fraction and is suppressed with the increase of CO2 fraction due to the combination effect of hydrodynamic and thermal-diffusive instability.  相似文献   

3.
Global warming due to CO2 emissions has led to the projection of hydrogen as an important fuel for future. A lot of research has been going on to design combustion appliances for hydrogen as fuel. This has necessitated fundamental research on combustion characteristics of hydrogen fuel. In this work, a combination of experiments and computational simulations was employed to study the effects of diluents (CO2, N2, and Ar) on the laminar burning velocity of premixed hydrogen/oxygen flames using the heat flux method. The experiments were conducted to measure laminar burning velocity for a range of equivalence ratios at atmospheric pressure and temperature (300 K) with reactant mixtures containing varying concentrations of CO2, N2, and Ar as diluents. Measured burning velocities were compared with computed results obtained from one-dimensional laminar premixed flame code PREMIX with detailed chemical kinetics and good agreement was obtained. The effectiveness of diluents in reduction of laminar burning velocity for a given diluent concentration is in the increasing order of argon, nitrogen, carbon dioxide. This may be due to increased capabilities either to quench the reaction zone by increased specific heat or due to reduced transport rates. The lean and stoichiometric H2/O2/CO2 flames with 65% CO2 dilution exhibited cellular flame structures. Detailed three-dimensional simulation was performed to understand lean H2/O2/CO2 cellular flame structure and cell count from computed flame matched well with the experimental cellular flame.  相似文献   

4.
Experiments were performed to add hydrogen to liquefied petroleum gas (LPG) and methane (CH4) to compare the emission and impingement heat transfer behaviors of the resultant LPG–H2–air and CH4–H2–air flames. Results show that as the mole fraction of hydrogen in the fuel mixture was increased from 0% to 50% at equivalence ratio of 1 and Reynolds number of 1500 for both flames, there is an increase in the laminar burning speed, flame temperature and NOx emission as well as a decrease in the CO emission. Also, as a result of the hydrogen addition and increased flame temperature, impingement heat transfer is enhanced. Comparison shows a more significant change in the laminar burning speed, temperature and CO/NOx emissions in the CH4 flames, indicating a stronger effect of hydrogen addition on a lighter hydrocarbon fuel. Comparison also shows that the CH4 flame at α = 0% has even better heat transfer than the LPG flame at α = 50%, because the longer CH4 flame configures a wider wall jet layer, which significantly increases the integrated heat transfer rate.  相似文献   

5.
The sulfur–iodine (SI) cycle to produce hydrogen from water requires a multistage distillation column to concentrate a sulfuric acid solution. To design a concentration process of a sulfuric acid solution that can be applied to the cycle, its static and dynamic simulation is essentially demanded. A 50 NL H2/h scale SI test facility to be operated under a pressurized environment has been constructed in Korea. This study focuses on the sulfuric acid multi-stage distillation column (SAMDC-50L) for the 50 NL H2/h SI test facility. The SAMDC-50L was designed and installed in 2012. Based on the design specifications and operation method, a start-up behavior of the SAMDC-50L has been analyzed using the simulation code “KAERI-DySCo”. As a result of the start-up dynamic simulation, it is confirmed that the SAMDC-50L will approach to the steady state value within 30,000 s to fulfill the hydrogen production rate of 50 NL H2/h. On the other hand, it is expected that the operation time approaching a steady state decreases with an increase in the set point of the condenser temperature until a dew point of the top vapor product and the time required for the transition to the complete steady state is increased with an increasing reflux ratio and reboiler hold-up.  相似文献   

6.
Experiments were conducted to investigate the combustion and emission characteristics of a diesel engine with addition of hydrogen or methane for dual-fuel operation, and mixtures of hydrogen–methane for tri-fuel operation. The in-cylinder pressure and heat release rate change slightly at low to medium loads but increase dramatically at high load owing to the high combustion temperature and high quantity of pilot diesel fuel which contribute to better combustion of the gaseous fuels. The performance of the engine with tri-fuel operation at 30% load improves with the increase of hydrogen fraction in methane and is always higher than that with dual-fuel operations. Compared with ULSD–CH4 operation, hydrogen addition in methane contributes to a reduction of CO/CO2/HC emissions without penalty on NOx emission. Dual-fuel and tri-fuel operations suppress particle emission to the similar extent. All the gaseous fuels reduce the geometry mean diameter and total number concentration of diesel particulate. Tri-fuel operation with 30% hydrogen addition in methane is observed to be the best fuel in reducing particulate and NOx emissions at 70 and 90% loads.  相似文献   

7.
The binary phase diagram NaBO2–H2O at ambient pressure, which defines the different phase equilibria that could be formed between borates, end-products of NaBH4 hydrolysis, has been reviewed. Five different solid borates phases have been identified: NaBO2·4H2O (Na[B(OH)4]·2H2O), NaBO2·2H2O (Na[B(OH)4]), NaBO2·2/3H2O (Na3[B3O4(OH)4]), NaBO2·1/3H2O (Na3[B3O5(OH)2]) and NaBO2 (Na3[B3O6]), and their thermal stabilities have been studied. The boundaries of the different Liquid + Solid equilibria for the temperature range from −10 to 80 °C have been determined, confirming literature data at low temperature (20–50 °C). Moreover the following eutectic transformation, Liq. → Ice + NaBO2·4H2O, occurring at −7 °C, has been determined by DSC. The Liquid–Vapour domain has been studied by ebullioscopy. The invariant transformation Liq.  Vap. + NaBO2·2/3H2O has been estimated at 131.6 °C. This knowledge is paramount in the field of hydrogen storage through NaBH4 hydrolysis, in which borate compounds were obtained as hydrolysis reaction products. As a consequence, the authors propose a comparison with previous NaBO2–H2O binary phase diagrams and its consequence related to hydrogen storage through NaBH4 hydrolysis.  相似文献   

8.
In this work the synthesis of a semi aliphatic BTDA-DAH polyimide and their blends with BTDA-ODA and BTDA-DDS polyimides was carried out in order to improve the H2 permselective properties of polyimides. The syntheses were made using the well-known two steps method and the silylation method. The prepared films were characterized by FTIR, DSC, thermal stability and fluorescence spectroscopy. Intercatenary distances (d-spacing) and gas separation properties were also investigated. PI blend membranes presented only one glass transition temperature (Tg) intermediate between those of the neat polyimides. Fluorescence spectra were a useful tool to recognize electron-donor and electron-acceptor interactions indicating intermolecular charge-transfer complex (CTC) formation which were confirmed by UV–Vis absorptions. As a result, a decrease in the intercatenary distances and a shift for both IR and fluorescence bands of polyimide blends were measured. PI blend membranes showed a permeability decrease with respect to the neat ones, while the selectivity increased according to X-ray diffraction results. To analyze the polyimide blend permselectivities, H2/CH4, H2/CO2, H2/O2 and H2/N2 systems were chosen. As a result, H2/CH4 separation factor of PI blends was among the highest reported by other authors using traditional membrane materials.  相似文献   

9.
This study has been implemented in two sections. At first, the turbulent jet flame of DLR-B is simulated by combining the kε turbulence model and a steady flamelet approach. The DLR-B flame under consideration has been experimentally investigated by Meier et al. who obtained velocity and scalar statistics. The fuel jet composition is 33.2% H2, 22.1% CH4 and 44.7% N2 by volume. The jet exit velocity is 63.2 m/s resulting in a Reynolds number of 22,800. Our focus in the first part is to validate the developed numerical code. Comparison with experiments showed good agreement for temperature and species distribution. At the second part, we exchanged methane with propane in the fuel composition whilst maintaining all other operating conditions unchanged. We investigated the effect of hydrogen concentration on C3H8–H2–N2 mixtures so that propane mole fraction extent is fixed. The hydrogen volume concentration rose from 33.2% up to 73.2%. The achieved consequences revealed that hydrogen addition produces elongated flame with increased levels of radiative heat flux and CO pollutant emission. The latter behavior might be due to quenching of CO oxidation process in the light of excessive cold air downstream of reaction zone.  相似文献   

10.
11.
A series of gold catalysts supported on ZnO–TiO2 with various ZnO contents were prepared. ZnO–TiO2 was prepared by incipient-wetness impregnation using aqueous solution of Zn(NO3)2 onto TiO2. Gold catalysts with nominal gold loading of 1 wt. % were prepared by deposition-precipitation (DP) method. Various preparation parameters, such as pH value and Zn/Ti ratio on the characteristics of the catalysts were investigated. The catalysts were characterized by inductively-coupled plasma–mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The preferential oxidation of CO in H2 stream (PROX) on these catalysts was carried out in a fixed bed micro-reactor with a feed of CO: O2: H2: He = 1: 1: 49: 49 (volume ratios) and a space velocity of 30,000 ml/g h. Limited amount of oxygen was used in the feed. A high gold dispersion and narrow gold particle size distribution was obtained. Au/ZnO–TiO2 with Zn/Ti atomic ratio of 5/95 showed the highest CO conversion at room temperature. The conversion increased with increasing temperature even in the presence of limited amount of oxygen, showing suppression in H2 oxidation. Au/ZnO–TiO2 prepared at pH 6 had a higher CO conversion and higher selectivity of CO oxidation than those prepared at other pH values. The addition of ZnO on TiO2 resulted in higher dispersion of gold particles and narrow particle size distribution. The stronger the Au–Zn(OH)2 interaction, the finer the supported Au nanoparticles, and the better the catalytic performance of the catalyst for PROX reaction. Part of Au was in Au+ state due to the interaction with Zn(OH)2 and nano Au size. The oxidation state of gold species played an important role in determining its CO conversion and selectivity of CO oxidation in hydrogen stream. The catalysts were stable at 80 °C for more than 80 h.  相似文献   

12.
Ni–Ce0.8Zr0.2O2 and Ni–MgO–Ce0.8Zr0.2O2 catalysts were investigated for H2 production from CO2 reforming of CH4 reaction at a very high gas hourly space velocity of 480,000 h−1. Ni–MgO–Ce0.8Zr0.2O2 exhibited higher catalytic activity and stability (CH4 conversion >95% at 800 °C for 200 h). The outstanding catalytic performance is mainly due to the basic nature of MgO and an intimate interaction between Ni and MgO.  相似文献   

13.
NaBH4 is a candidate for H2 storage in solid phase. NaBH4 hydrolysis readily produces H2 gas and NaBO2 which can regenerate NaBH4 with pressurized hydrogen and the aid of a reducing agent like Magnesium above 500 °C. This paper deals with the NaBH4 thermochemical regeneration from the NaBO2–Mg–H2 ternary system at isothermal temperatures between 558 and 634 °C and H2 pressure in the range 2–31 bar. A simplified Langmuir adsorption model has been applied for the interpretation of the in-situ H2 pressure variations. The applied model is zero-dimensional but provides a reasonable approach to identify the rate determining step and acquire relevant thermodynamic and kinetic parameters such as equilibrium constant (Keq), Gibbs free energy (ΔrG0) and reaction rate coefficients (k). The study provides an apparent activation energy and Gibbs free energy of this process of 29.2 kJ/mol and −76.9 kJ/mol, respectively.  相似文献   

14.
Ball milling the mixture of Mg(NH2)2, LiH and NH3BH3 in a molar ratio of 1:3:1 results in the direct liberation of 9.6 wt% H2 (11 equiv. H), which is superior to binary systems such as LiH–AB (6 equiv. H), AB–Mg(NH2)2 (No H2 release) and LiH–Mg(NH2)2 (4 equiv. H), respectively. The overall dehydrogenation is a three-step process in which LiH firstly reacts with AB to yield LiNH2BH3 and LiNH2BH3 further reacts with Mg(NH2)2 to form LiMgBN3H3. LiMgBN3H3 subsequently interacts with additional 2 equivalents of LiH to form Li3BN2 and MgNH as well as hydrogen.  相似文献   

15.
Interaction of hydrogen with Ce3Co8Si intermetallic compound (IMC) has been studied. IMC Ce3Co8Si absorbs hydrogen and forms a hydride phase at 11 atm and 50 °C. X-ray analysis of Ce3Co8Si H10.2 saturated hydride phase lattice showed that it has the symmetry of the initial compound and is expanded with strong anisotropy due to increased c parameter. Analysis of hydrogen desorption isotherms in Ce3Co8Si–H2 system has revealed that the decomposition of hydride phase occurred in one stage. The heat of hydride phase formation was calculated on the base of obtained equilibrium pressures data at 50, 60 and 70 °C. The results obtained demonstrate that Ce3Co8Si intermetallic compound may be used as reversible accumulator of hydrogen in medium temperatures interval.  相似文献   

16.
As for the premixed H2–O2–N2 gas ignited and induced by flame in tube, this paper represents systemic researches on its detonative formation process and flow field changes under different initial conditions (pressure, temperature, component concentration). The conservational Euler equation set with chemical reaction is taken as the basic gas phase equation model and the reduced elementary chemical reaction and shock wave problem are considered available so as to establish a theoretical model of premixed H2–O2–N2 combustible gas detonation process. A unity coupling TVD format with second-order accuracy is adopted to solve the gas phase equation and deduce the two-dimension Riemann invariant, and the TVD format for solution of the polycomponent convection equation with elementary chemical reaction is proposed. Meanwhile, a time splitting format is adopted to perfectly treat with the rigid problem resulted from the higher time difference value between gas phase flow characteristic time and chemical reaction characteristic time. It is shown by the calculation results that the detonation waves form certain angle with relation to the tube wall surface at the initial stage of ignition, so as to incur reflections and form reflection waves; during the propagation of the detonation waves, the reflection wave structures are propagated backwards the back of waves constantly, so the whole flow field is characterized of obvious two-dimension. Besides, the excessive pressure detonation occurs at first before formation of the stable detonation propagation process, then a stable detonation propagation process forms finally. Mixed gas detonation characteristics resulted from different calculated-initially parameters are different. The higher the initial temperature and pressure of flame is, the shorter the induction time for detonation formed due to combustion acceleration of the mixed gas is, but which nearly brings no great influence on the later propagation process of the detonation waves. The initial mixed gas component can influence the detonation characteristic of the mixed gas observably, when the quantity relative ratio is close to 1 and the mixed gas with larger reaction activity, its detonation propagation speed is rapider and the pressure after detonation waves is higher. The simulation result keeps accordant with the calculated result of the typical C–J detonation theory model.  相似文献   

17.
An innovative, nanostructured composite, anode electrocatalyst, material has been developed for the electrolytic splitting of (100%) H2S feed content gas operating at 135 kPa and 150 °C. A new class of anode electrocatalyst with general composition, RuO2–CoS2 has shown great stability and desired properties at typical operating conditions. This configuration showed stable electrochemical operation over the period of 24 h and also exhibited a maximum current density of (0.019 A/cm2). The kinetic behaviors of various anode-based electrocatalysts demonstrated that, exchange current density, which is a direct measure of the electrochemical reaction, increased with RuO2–CoS2-based anodes. Moreover, high levels of feed utilization were possible using these materials. Electrochemical performance, current density, and sulfur tolerance were enhanced compared to the other tested anode configurations. The structural, microstructural and surface behavior of RuO2–CoS2 anode electrocatalyst was investigated in detail.  相似文献   

18.
The laminar burning velocities of H2–air mixtures diluted with N2 or CO2 gas at high temperatures were obtained from planar flames observed in externally heated diverging channels. Experiments were conducted for an equivalence ratio range of 0.8–1.3 and temperature range of 350–600 K with various dilution rates. In addition, computational predictions for burning velocities and their comparison with experimental results and detailed flame structures have been presented. Sensitivity analysis was carried out to identify important reactions and their contribution to the laminar burning velocity. The computational predictions are in reasonably good agreement with the present experimental data (especially for N2 dilution case). The burning velocity maxima was observed for slightly rich mixtures and this maxima was found to shift to higher equivalence ratios (Ф) with a decrease in the dilution. The effect of CO2 dilution was more profound than N2 dilution in reducing the burning velocity of mixtures at higher temperatures.  相似文献   

19.
This article describes in situ heating and observation of a LiNH2–2LiH mixture in an environmental scanning electron microscope (ESEM). The LiNH2–2LiH mixture showed extensive morphological changes with heating and attendant hydrogen desorption. Static images and real-time movies were obtained during the dehydrogenation process. H2 evolution commences at ∼150 °C (LiNH2 + 2LiH → Li2NH + H2 + LiH), and continues until ∼410 °C. Dramatic morphological changes are observed at 220 and 410 °C (Li2NH + LiH → Li3N + H2). The material converts to a microcrystalline phase at higher temperatures (>500 °C). The observed H2 desorption and morphological changes occur at temperatures in good agreement with those measured by complementary analytical methods. This is the first time the major structural and morphological changes attendant on H2 loss from this system have been observed in situ and in real time.  相似文献   

20.
A prior paper has presented a novel design of a heavy duty truck engine fuelled with H2. In this design, the customary in-cylinder Diesel injector and glow plug are replaced with a main chamber fuel injector and a jet ignition pre-chamber. The jet ignition pre-chamber is a small volume that is connected to the in-cylinder through calibrated orifices accommodating another fuel injector and a glow or a spark plug that controls the start of combustion. This design permits to operate the engine in four different modes: traditional compression ignition (CI), diffusion, Diesel-like (M1); mixed gasoline/Diesel-like (M2); traditional spark ignition (SI), premixed, gasoline-like (M3); premixed, homogeneous charge compression ignition HCCI-like (M4). In the mode diffusion with jet ignition (M1), an injection occurs in the jet ignition pre-chamber before the main chamber fuel is injected and the engine operates therefore mostly Diesel-like. In the mode mixed diffusion/premixed Diesel/gasoline-like (M2) an injection occurs in the jet ignition pre-chamber after only part of the main chamber fuel is injected and mixed with air. In the mode premixed with jet ignition (M3), an injection occurs in the jet ignition pre-chamber after the main chamber fuel is injected and mixed with air and the engine operates gasoline-like. Finally, in the mode premixed without jet ignition (M4), no injection occurs in the jet ignition pre-chamber and the engine operates HCCI-like. Modelling results have already been presented and discussed with H2 as the main chamber and pre-chamber fuel. This paper considers the option to accommodate a second main chamber injector that will inject the NH3 that will then burn in air thanks to the hot combusting gases from the combustion of H2 and air using the modes M1 and M2 described above. The mode M3 also of interest is not considered here. First results of simulations show the opportunity to achieve better than Diesel fuel energy conversion efficiency thanks to the reduced heat losses of the “cold burning” NH3 and suggest to perform the experiments needed to further support the findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号