首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Operation mode of combined cooling heating and power (CCHP) system determines its energetic and environmental performances. This paper analyzes the energy flows of CCHP system and separated production (SP) system. The fuel energy consumptions of CCHP system following electrical demand management (EDM) and thermal demand management (TDM) are deduced respectively. Three indicators: primary energy saving, exergy efficiency and CO2 emission reduction, are employed to evaluate the performances of CCHP system for a commercial building in Beijing, China. The feasibility analysis shows that the performance of CCHP system is strictly dependent upon building energy demands. The selection of CCHP operation modes is systemically based on building loads, CCHP system and local SP system. The calculation results conclude that CCHP system in winter under EDM achieves more benefits than in summer. The sensitivity discussion indicates that the coefficient of performance for cooling and the efficiency of electricity generation are the most sensitive variables to the energetic and environmental performances of CCHP system.  相似文献   

2.
The technical, economical and environmental performances of combined cooling, heating and power (CCHP) system are closely dependent on its design and operation strategy. This paper analyzes the energy flow of CCHP system and deduces the primary energy consumption following the thermal demand of building. Three criteria, primary energy saving (PES), annual total cost saving (ATCS), and carbon dioxide emission reduction (CDER) are selected to evaluate the performance of CCHP system. Based on the energy flow of CCHP system, the capacity and operation of CCHP system are optimized by genetic algorithm (GA) so as to maximize the technical, economical and environmental benefits achieved by CCHP system in comparison to separation production system. A numerical example of gas CCHP system for a hotel building in Beijing is given to ascertain the effectiveness of the optimal method. Furthermore, a sensitivity analysis is presented in order to show how the optimal operation strategy would vary due to the changes of electricity price and gas price.  相似文献   

3.
Heating and cooling energy requirements for buildings are usually supplied by separated systems such as furnaces or boilers for heating, and vapor compression systems for cooling. For these types of buildings, the use of combined cooling, heating, and power (CCHP) systems or combined heating and power (CHP) systems are an alternative for energy savings. Different researchers have claimed that the use of CCHP and CHP systems reduces the energy consumption related to transmission and distribution of energy. However, most of these analyses are based on reduction of operating cost without measuring the actual energy use and emissions reduction. The objective of this study is to analyze the performance of CCHP and CHP systems operating following the electric load (FEL) and operating following the thermal load (FTL), based on primary energy consumption (PEC), operation cost, and carbon dioxide emissions (CDE) for different climate conditions. Results show that CCHP and CHP systems operated FTL reduce the PEC for all the evaluated cities. On the other hand, CHP systems operated FEL always increases the PEC. The only operation mode that reduces PEC and CDE while reducing the cost is CHP‐FTL. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Integrated Energy Systems (IES), as technology that use thermal activated components to recover waste heat, are energy systems that offer key solution to global warming and energy security through high overall energy efficiency and better fuel use. Combined Cooling, Heating, and Power (CCHP) Systems are IES that use recovered thermal energy from the prime mover to produce heating and cooling for the building. The CCHP operational strategy is critical and it has to be considered in a well designed system since it defines the ultimate goal for the benefits expected from the system. One of the most common operational strategies is the cost-oriented strategy, which allows the system to operate at the lowest cost. A primary energy strategy (PES) optimizes energy consumption instead of cost. However, as a result of the worldwide concern about global warming, projects that target reduction of greenhouse gas (GHG) emissions have gained a lot of interest. Therefore, for a CCHP system, an emission strategy (ES) would be an operational strategy oriented to minimize emission of pollutants. In this study, the use of an ES is proposed for CCHP systems targeted to reduce emission of pollutants. The primary energy consumption (PEC) reduction and carbon dioxide (CO2) emission reduction obtained using the proposed ES are compared with results obtained from the use of a PES. Results show that lower emission of CO2 is achieved with the ES when compared with the PES, which prove the advantage of the ES for the design of CCHP systems targeted to emissions reduction.  相似文献   

5.
The diffusion of cogeneration and trigeneration plants as local generation sources could bring significant energy saving and emission reduction of various types of pollutants with respect to the separate production of electricity, heat and cooling power. The advantages in terms of primary energy saving are well established. However, the potential of combined heat and power (CHP) and combined cooling heat and power (CCHP) systems for reducing the emission of hazardous greenhouse gases (GHG) needs to be further investigated. This paper presents and discusses a novel approach, based upon an original indicator called trigeneration CO2emission reduction (TCO2ER), to assess the emission reduction of CO2 and other GHGs from CHP and CCHP systems with respect to the separate production. The indicator is defined in function of the performance characteristics of the CHP and CCHP systems, represented with black-box models, and of the GHG emission characteristics from conventional sources. The effectiveness of the proposed approach is shown in the companion paper (Part II: Analysis techniques and application cases) with application to various cogeneration and trigeneration solutions.  相似文献   

6.
Combined cooling, heating, and power (CCHP) is a cogeneration technology that integrates an absorption chiller to produce cooling, which is sometimes referred to as trigeneration. For building applications, CCHP systems have the advantage to maintain high overall energy efficiency throughout the year. Design and operation of CCHP systems must consider the type and quality of the energy being consumed. Type and magnitude of the on-site energy consumed by a building having separated heating and cooling systems is different than a building having CCHP. Therefore, building energy consumption must be compared using the same reference which is usually the primary energy measured at the source. Site-to-source energy conversion factors can be used to estimate the equivalent source energy from site energy consumption. However, building energy consumption depends on multiple parameters. In this study, mathematical relations are derived to define conditions a CCHP system should operate in order to guarantee primary energy savings.  相似文献   

7.
Nowadays the study of Net Zero Energy Buildings (NZEBs) is fundamental, because they are the main strategy to reduce the building energy demand and CO2-equivalent emissions.This paper analyses a case study concerning a multipurpose building located in Palermo (Southern Italy), and evaluates the benefits related to the use of an earth-to-air heat exchanger in a NZEB, in terms of energy saving and reduction of CO2-equivalent emissions, for a Mediterranean climate.The chosen building envelope is thermally performing. The HVAC system consists in fan-coil units connected to an air-to-water heat pump, and mechanical ventilation. The energy demand is reduced by an earth-to-air heat exchanger that pre-heats the ventilation outside air in winter and cools it in summer. The optimization of the heat exchange with the ground is a key-element to reduce the primary energy requirements and CO2-equivalent emissions, especially during summer. Moreover, this paper assesses the possibility to obtain a NZEB using only on-site renewable energy (on the roof of the building), with and without the earth-to-air heat exchanger. The energy analysis is carried out by means of a dynamic building simulation engine, namely EnergyPlus. In addition, a thermal performance and an environmental analysis are performed.  相似文献   

8.
Albeit numerous studies discussing manifold issues of combined cooling, heating and power (CCHP) systems, there is still lack of theoretical studies indicating to what extent the energy mismatch and the deviating working conditions affect the CCHP performance, absence of reports systematically summarizing the multiple effects of energy saving units (ESUs), and deficiency of research quantifying the benefits from ESUs to energy savings. The shortage of such studies will confuse some CCHP designers when a CCHP system is designed. Therefore, in this research, theoretical discussions have been undertaken about the energy mismatch issue between CCHP systems and their users as well as the multiple effects of ESUs on CCHP systems. An improved calculational method of energy storage rate (ESR) has been adopted to evaluate the energy savings performance of CCHP systems. Two general heat‐to‐electricity ratios (Ruser for CCHP users and RCCHP for CCHP systems) have been used to quantify the energy mismatch between CCHP systems and their users. In the regime of ‘priority of providing cooling’, the ESR reaches its maximum when Ruser is equal to RCCHP. Otherwise, the ESR tends to decrease rapidly, especially when the electrical demand must be supplemented from the grid. Furthermore, when the CCHP system produces more electricity than required, the payment mode of extra electricity from the CCHP system will significantly affect the ESR. Therefore, it is imperative to reach an international consensus regarding the dispose of extra CCHP products. The theoretical analyses also corroborate the advantages of incorporating an ESU into a CCHP system. The ESU enables the CCHP system components to operate at their optimal working conditions. Meanwhile, the power generation unit and the absorption refrigerator capacities can then be reduced. Moreover, the ESU also promotes the productivity of electricity and ensures an undiminished ESR regardless of what extra electricity payment mode is adopted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Solar energy systems are an effective way to meet the needs of zone heating, cooling, electricity, and domestic hot water. However, to reach sustainability, and energy storage unit should be considered for installation. In this study, two combined cooling, heating and power (CCHP) systems are simulated and studied using TRNSYS software; both using natural gas engine generators and photovoltaics as prime movers and a hydrogen fuel cell/electrolyzer storage unit, one with absorption chiller and another with compression chiller cooling. For the study, a residential building is modeled for three major populated climate zones of the United States of America, namely, Hot-humid, mixed-humid and cold using DesignBuilder and EnergyPlus software. The energy demand for its HVAC operation and domestic electricity is obtained and used for system simulation in TRNSYS software. Due to choosing actual equipment for the CCHP arrangement, precise economic and environmental models are designed to further evaluate the possibility of execution of the system. The results show that absorption chiller-equipped CCHP has better performance both environmentally and economically. In addition, the outcome shows that the suggested systems show less favorability to be utilized in hot humid climate zones.  相似文献   

10.
小型燃气轮机CCHP系统变工况性能入口加热调控研究   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种利用冷热电联产系统(CCHP)低温烟气与环境空气混和加热控制压气机入口温度,提升燃气轮机冷热电系统变工况性能的方法,并以1.9 MW小型燃气轮机OPRA16为例,建立了CCHP系统模型,分析了调控方法的效果、机理。结果表明,入口混和加热可以有效改善冷热电联产系统变工况下系统性能,并扩展系统节能运行范围。与传统燃料流量调控方法相比,新型调控手段下夏季制冷与冬季供热模式下系统节能率分别提升5.7%和21.6%。  相似文献   

11.
微型燃气轮机冷热电联供系统的热力学分析   总被引:3,自引:0,他引:3  
魏兵  王志伟  蒋露  李莉 《节能技术》2006,24(5):394-398,414
根据微燃机冷热电联供系统的工作流程,建立了以微燃机为中心的数学模型。通过改变微燃机回热度、温比、压比,分析了不同季节联供系统的系统效率、制冷或供热效率、微燃机发电效率、二次余热回收效率的变化;对影响联供系统一次能源节约率的因素进行了分析,找出了主要因素。对联供系统的火用效率和各部件的[火用]损失系数进行了计算,得出了系统节能的主要努力方向。  相似文献   

12.
冷热电联供系统运行模式优化   总被引:1,自引:0,他引:1  
以最小运行费用和最小一次能耗率为目标函数,基于非线性规划和动态规划,利用MATLAB对冷热电联供系统的运行模式进行优化。通过与常规供能方式的比较,为建筑供能方案初设提供辅助设计。  相似文献   

13.
廖爱群  杨茉  卢玫  张翠珍 《节能》2009,28(9):23-26
通过对热电联产冷分产及冷热电联产能源消耗的计算分析比较,进一步论述在热电厂热电联产基础上发展冷热电联产的可行性和合理性,结合实例说明发展冷热电联产所产生的经济性、节能性和环保性,并为其他热电厂的节能改造提出建议,  相似文献   

14.
As a high-efficiency and eco-friendly way of energy conversion, fuel cell has received much attention in recent years. A novel residential combined cooling, heating and power (CCHP) system, consisting of a biomass gasifier, a proton exchange membrane fuel cell (PEMFC) stack, an absorption chiller and auxiliary equipment, is proposed. Based on the established thermodynamic models, the effects of operating parameters, biomass materials type and moisture content on the system performance are closely investigated. Overall system performance is then compared under four different operating modes. From the viewpoints of energy utilization and CO2 emissions, the CCHP mode has the best performance with corresponding energy efficiency of 57.41% and CO2 emission index of 0.516 ton/MWh. Exergy analysis results suggest that the optimization and transformation on the gasifier and PEMFC stack should be encouraged. Energy and exergy assessments in this research provide pragmatic guidance to the performance improvement of the integrated CCHP systems with PEMFC. This research also achieves a reasonable combination of efficient cogeneration, green hydrogen production and full recovery of low grade waste heat.  相似文献   

15.
In order to improve the comprehensive energy utilization rate of combined cooling, heating, and power (CCHP) system, a hybrid energy storage system (HESS) is proposed in this paper consisting of electric and thermal energy storage systems. And the overall optimization design and operation of CCHP system with HESS are the main problems to be solved in application. Therefore, the topology and the energy flow model of CCHP system with HESS are established and analyzed according to the energy conversion characteristics of the component equipment. Moreover, combined with five evaluative restrictions for HESS system, a rule-based energy management strategy is designed to realize the decoupling regulation of electric energy and thermal energy in CCHP system. On this basis, a multi-objective optimization model is studied by taking the indicators of annual cost ratio, the primary energy consumption ratio, and loss energy ratio, and then the capacity parameters are optimized by particle swarm optimization algorithm (PSOA). Finally, a case is carried out to compare the energy allocation situations and capacity optimization results between CCHP system with HESS and CCHP system with single thermal energy storage system (ST). Results show that the capacity of ICE is reduced by 34%, and the annual cost and the primary energy consumption are saved about 7.69% and 18.47%, respectively, demonstrating that HESS has better optimization effect and applicable for small-scale CCHP system.  相似文献   

16.
建立了由风能和太阳能作为驱动能源的冷热电联产多能互补系统(DCERs CCHP),包含发电、冷热电联产(CCHP)和辅助供热三个子系统,将该系统与以天然气作为驱动能源的冷热电联产系统(NG CCHP)相对比,建立了能源绩效、环境绩效和经济绩效三个维度评估体系,并以能效最高、成本最小和环境效益最大为目标,构建调度策略优化模型,进行实例仿真。结果表明,与传统的NG CCHP相比,DCERs CCHP具有更好的能源绩效、经济绩效和环境绩效;与其他单目标优化模式相比,综合优化模式下的系统运行效果最佳;NG占比增加将降低项目盈利能力,风电、光伏设备成本降低将提升项目的盈利能力。  相似文献   

17.
Optimization of combined cooling, heating, and power (CCHP) systems operation commonly focuses only on energy cost. Different algorithms have been developed to attain optimal utilization of CCHP units by minimizing the energy cost in CCHP systems operation. However, other outcomes resulting from CCHP operation such as primary energy consumption and emission of pollutants should also be considered during CCHP systems evaluation as one would expect these outcomes can be subject to regulation. This paper presents an optimization of the operation of CCHP systems for different climate conditions based on operational cost, primary energy consumption (PEC), and carbon dioxide emissions (CDE) using an optimal energy dispatch algorithm. The results for the selected cities demonstrate that in general there is not a common trend among the three optimization modes presented in this paper since optimizing one parameter may reduce or increase the other two parameters. The only cities that show reduction of PEC while also reducing the CDE are Columbus, MS; Minneapolis, MN; and Miami, FL. For these cities the operational cost always increases when compared to the reference case consisting of using a vapor/compression cycle for cooling and natural gas for heating. On the other hand, for San Francisco and Boston, CCHP systems increase the CDE. In general, if CCHP systems increase the cost of operation, as long as energy savings and reduction of emissions are guaranteed, the implementation of these systems should be considered.  相似文献   

18.
This paper proposes a novel combined cooling, heating, and power (CCHP) system integrated with molten carbonate fuel cell (MCFC), integrated solar gas-steam combined cycle (ISCC), and double-effect absorption lithium bromide refrigeration (DEALBR) system. According to the principle of energy cascade utilization, part of the high-temperature waste gas discharged by MCFC is led to the heat recovery steam generator (HRSG) for further waste heat utilization, and the other part of the high-temperature waste gas is led to the MCFC cathode to produce CO32?, and solar energy is used to replace part of the heating load of a high-pressure economizer in HRSG. Aspen Plus software is used for modeling, and the effects of key factors on the system performances are analyzed and evaluated by using the exergy analysis method. The results show that the new CCHP system can produce 494.1 MW of electric power, 7557.09 kW of cooling load and 57,956.25 kW of heating load. Both the exergy efficiency and the energy efficiency of the new system are 61.69% and 61.64%, respectively. Comparing the research results of new system with similar systems, it is found that the new CCHP system has better ability to do work, lower CO2 emission, and can meet the cooling load, heating load and electric power requirements of the user side at the same time.  相似文献   

19.
Emission and electricity consumption are important aspects of a pellet heating system. Low noxious emissions, particularly carbon monoxide, are a measure of a well‐performing system. High carbon monoxide emissions are often caused by unnecessary cycling of the burner, poor adjustment of the combustion air and insufficient maintenance. The carbon monoxide output, the thermal performance and the electricity consumption for modulating and non‐modulating operation mode have been investigated by simulations of four stoves/boilers as part of combined solar and pellet heating systems. The systems have been modelled with the simulation programme TRNSYS and simulated with the boundary conditions for space heating demand, hot water load and climate data as used in earlier research projects. The results from the simulations show that operating the pellet units with modulating combustion power reduces the number of starts and stops but does not necessarily reduce the carbon monoxide output. Whether the carbon monoxide output can be reduced or not depends very strongly on the reduction of starts and stops and how much the carbon monoxide emissions increase with decreased combustion power, which are in turn dependent on the particular settings of each pellet burner and how the heat is transferred to the building. However, for most systems the modulating operation mode has a positive impact on carbon monoxide emissions. Considering the total auxiliary energy demand, including the electricity demand of the pellet units, the modulating combustion control is advantageous for systems 1 and 4 for the used boundary conditions. The study also shows that an appropriate sizing of the stove or boiler has a huge potential for energy saving and carbon monoxide emission reduction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
华贲 《中外能源》2012,17(2):18-22
“十二五”期间中国15.7万亿元的增量经济大部分将在新规划的新区实现,但从各地正在规划和建设的新区情况来看,缺少从一次能源到终端需求的冷、热、电、汽全过程高效联供的分布式供能规划.据推算,若“十二五”期间新区能效不变,工业和建筑物燃料需求将增加3×108t标煤/a,而这显然是不可能的.新规划区域能源模式创新、提高能效是“十二五”中国经济发展的关键,采用天然气分布式冷热电联供能源系统(DES/CCHP),可使能源终端供应能效成倍提高.“十二五”期间中国必须从区域经济发展的能源保障高度来规划分布式冷热电联供,规划决策中要按照具体情况,以经济性、能效和碳排放指标是否最优为判据.CCHP可以调峰换取电价,实现互利双赢.制订区域DES/CCHP规划时应注意区域能源规划先行,摆脱热电联产的思维定势,树立冷热电联供的科学理念,不可忽视向居民供应生活热水起到的提高能效的作用,以及如何确定电力负荷、装机容量和节能减排指标等问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号