首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 713 毫秒
1.
A drift-field in the base region of a solar cell can enhance the effective minority-carrier diffusion length, thus increasing the long-wavelength spectral response and energy-conversion efficiency. Silicon thin-films of 20–32 μm thickness as a cell base layer were grown by liquid-phase epitaxy (LPE) on electronically inactive heavily doped p++-type CZ silicon substrates. Growth was performed from In/Ga solutions, and in a purified Ar/4%H2 forming gas ambient, rather than pure H2. The Ga dopant concentration was tailored throughout the p-type film to create a drift-field in the base layer of the solar cell. An independently confirmed efficiency of 16.4% was achieved on such an LPE drift-field thin-film silicon solar cell with a total cell area of 4.11 cm2. Substrate thinning, combined with light trapping which is encouraged by the textured front surface and a highly reflective aluminium rear surface, is demonstrated to improve the long-wavelength response and thus, increase cell efficiency by a factor of up to 23.7% when thinned to a total cell thickness of 30 μm.  相似文献   

2.
This paper shows that rapidly formed emitters in less than 6 min in the hot zone of a conveyor belt furnace or in 3 min in an rapid thermal processing (RTP) system, in conjunction with a screen-printed (SP) RTP Al-BSF and passivating oxide formed simultaneously in 2 min can produce very simple high-efficiency n+-p-p+ cells with no surface texturing, point contacts, or selective emitter. It is shown for the first time that an 80 Ω/□ emitter and SP Al-back surface field (BSF) formed in a high throughput belt furnace produced 19% FZ cells and greater than 17% CZ cells with photolithography (PL) contacts. Using PL contacts, we also achieved 19% efficient cells on FZ, >18% on MCZ, and 17% boron-doped CZ by emitter and SP Al-BSF formation in <10 min in a single wafer RTP system. Finally, manufacturable cells with 45 Ω/□ emitter and SP Al-BSF and Ag contacts formed in the conveyor belt furnace gave 17% efficient cells on FZ silicon. Compared to the PL cells, the SP cell gave 2% lower efficiency along with a decrease in Jsc and fill factor. This loss in performance is attributed to a combination of the poor blue response, higher series resistance and higher contact shading in the SP devices  相似文献   

3.
Large area silicon solar cells with screen printed contacts have been realized for the first time on 10 cm diameter, p-type, Cz silicon wafers which were bonded to silicon substrates by alloying of a suitably thick screen printed layer of Al on them. In cells made on 300 μm thick wafers without texturization, antireflection coating and passivation of the front surface, the values of the open-circuit voltage (Voc), the short-circuit current density (Jsc), curve factor (CF) and the efficiency (η) were found to be in the range 572–579 mV, 16–19.2 mA cm−2, 0.53–0.61 and 5.5–5.89%, respectively, under simulated tungsten halogen light of 100 mW cm−2 intensity. Using thinner wafers and having optical confinement, surface passivation and effective back surface field, the cell performance would be substantially improved. In fact, an efficiency close to 18% (AM1.5) would be realizable with this approach. Another attractive feature of this approach is that a low-cost silicon substrate could be used at the bottom that would act as support for the thin top surface without disadvantage to the cell performance. In this paper only the principle has been demonstrated experimentally. Possible improvements have been shown by computer simulation.  相似文献   

4.
A comprehensive theoretical analysis taking into account the contribution from both the emitter and base regions having finite surface recombination velocity has been developed for computing short-circuit current, open-circuit voltage, and efficiency of thin AR coated thin silicon solar cells with textured front surface. The dependence of efficiency on the front surface and back surface recombination velocities and on the cell parameters have been investigated in details for varying cell thickness considering the effects of bandgap narrowing and Auger recombination in the material. It is shown that efficiency exceeding 24% can be attained with silicon solar cells having thickness as low as 25 μm provided both front and back surfaces are well passivated (S < 103cm/s) and the doping concentration in the base and emitter are in the range of 5 × 1016 to 1017cm−3 and 1018 to 5 × 1018cm−3, respectively. It is also shown that an efficiency of about 23% can be obtained for thin cells of 25 μm thickness with a much inferior quality materials having diffusion length of about 40 μm.  相似文献   

5.
Annealing effects of the single-crystalline silicon solar cells with hydrogenated microcrystaline silicon (μc-Si : H) film were studied to improve the conversion efficiency. Boron-doped (p+) μc-Si : H film was deposited in a RF plasma enhanced chemical vapor deposition system (RF plasma CVD) on the rear surface of the cell. With the optimized annealing conditions for the substrate, the conversion efficiency of 21.4% (AM1.5, 25°C, 100 mW/cm2) was obtained for 5 × 5 cm2 area single crystalline-solar cell.  相似文献   

6.
In this work, we have investigated three different surface passivation technologies: classical thermal oxidation (CTO), rapid thermal oxidation (RTO) and silicon nitride by plasma enhanced chemical vapor deposition (PECVD). Eight different passivation properties including SiO2/SiNx stacks on phosphorus diffused (100 and 40 Ω/Sq) and non-diffused 1 Ω cm FZ silicon were compared. Both types of SiO2 layers, CTO and RTO, yield a higher effective lifetime on the emitter surface than on the non-diffused surface. For the SiNx layers the situation is reverted. On the other hand, with SiO2/SiNx stacks high lifetimes are obtained not only non-diffused surface but also on the diffused surface. Thus, we have chosen the RTO/SiNx stack layers as front and rear surface passivation in solar cells, which passivate relatively good on the surface and has very low-weighted reflection. On planar cells passivated with RTO/SiNx a very high Voc of 675.6 mV and a Jsc of 35.1 mA/cm2 was achieved. Compared to a planar cell using CTO the efficiency of RTO/SiNx cell is 0.8% higher (4.5% relative). It can be concluded that the RTO/SiNx layers are the optimal passivation for the front and rear surface. On the other hand, for textured cells, the Jsc and FF of RTO/SiNx cells are lower than those of CTO cells. The main reasons of these Jsc and FF losses were also discussed systematically.  相似文献   

7.
In this study, highly stabilized hydrogenated amorphous silicon films and their solar cells were developed. The films were fabricated using the triode deposition system, where a mesh was installed between the cathode and the anode (substrate) in a plasma-enhanced chemical vapor deposition system. At a substrate temperature of 250 °C, the hydrogen concentration of the resulting film (Si–H=4.0 at%, Si–H2<1×1020 cm−3) was significantly less than that of conventionally prepared films. The films were used to develop the i-layers of solar cells that exhibited a significantly low degradation ratio of 7.96%.  相似文献   

8.
This paper reports on the successful deposition of boron doped p-type (p-C:B) and phosphorus doped n-type (n-C:P) semiconducting carbon films and fabrication of p-C:B on n-type silicon (Si) substrate (p-C:B/n-Si) and n-C:P/p-Si cells by pulsed laser deposition at room temperature using graphite target. The B and P powder were respectively mixed with graphite powder in range from 1% to 20% of B by weight in the targets (Bwt.%) and 1–10% of P by weight in the targets (Pwt.%), and compressed into pellet targets. The B and P atoms incorporated in the films were determined by X-ray photoelectron spectroscopy to be in the range of 0.2–1.75 and 0.22–1.77 atomic percentages, respectively. The cells performances have been given under illumination IV rectifying curve (AM 1.5, 100 mW/cm2, 25 °C). The open circuit voltage (Voc) and short circuit current density (Jsc) for p-C:B/n-Si are observed to vary from 230 to 250 mV and 1.5 to 2.2 mA/cm2, respectively. While, for n-C:P/p-Si cells the Voc and Jsc are observed to vary from 215 to 265 mV and 7.5 to 10.5 mA/cm2, respectively. The p-C:B/n-Si cells fabricated using 3 Bwt.% shows highest energy conversion efficiency, η = 0.20% and fill factor, FF = 45%. While, the n-C:P/p-Si cell fabricated using 7 Pwt.% shows highest of η = 1.14% and fill factor, FF = 41%. The quantum efficiency of p-C:B/n-Si and n-C:P/p-Si cells are observed to improve with percentage of B and P, respectively. The contribution of quantum efficiency in the lower wavelength region (below 750 nm) may be due to the photon absorption by carbon layer and in the higher wavelength region is due to the Si substrates.  相似文献   

9.
Heterojunction solar cells have been manufactured by depositing n-type a-Si: H on p-type 1–2Ω cm CZ single crystalline silicon substrates. Although our cell structure is very simple - neither a BSF nor a surface texturing is used - a conversion efficiency of 13.1% has been achieved on an area of 1 cm2. In this paper the technology is described and the dependence of the solar cell parameters on the properties of the n-type a-Si: H layer is discussed. It is shown that this cell type exhibits no degradation under light exposure.  相似文献   

10.
New directions in photovoltaics depend very often on financial possibilities and new equipment. In this paper, we present the modification of a standard screen-printing technology by using an infrared (IR) furnace for forming a n+/p structure with phosphorus-doped silica paste on 100 cm2 multicrystalline silicon wafers. The solar cells were fabricated on 300 μm thick 1 Ω cm p-type multicrystalline Bayer silicon. The average results for 100 cm2 multicrystalline silicon solar cells are: Isc=2589 mA, Voc=599 mV, FF=0.74, Eff=11.5%. The cross-sections of the contacts metallized in the IR furnace, as determined by scanning electron microscopy, and the phosphorus profile measured by an electrochemical profiler are shown. IR processing offers many advantages, such as a small overall thermal budget, low power and time consumption, in terms of a cost-effective technology for the continuous preparation of solar cells.  相似文献   

11.
High-efficiency PERL (passivated emitter, rear locally diffused) and PERT (passivated emitter, rear totally diffused) silicon solar cells have been fabricated on FZ and MCZ (magnetically confined Czochralski) substrates at the University of New South Wales. One of the PERL cells on FZ substrates demonstrated 24.7% efficiency at Sandia National Laboratories under the standard global AM1.5 spectrum (100 mW/cm2) at 25°C. Another PERT cell on a MCZ substrate, supplied by SEH, Japan, demonstrated 24.5% efficiency at Sandia under the same test conditions. Both these efficiencies are the highest ever reported for FZ and MCZ silicon cells, respectively. The cells made on MCZ substrates also showed stable cell performance.  相似文献   

12.
Polycrystalline silicon (poly-Si) films ( 10 μm) were grown from dichlorosilane by a rapid thermal chemical vapor deposition (RTCVD) technique, with a growth rate up to 100 Å/s at the substrate temperature (Ts) of 1030°C. The average grain size and carrier mobility of the films were found to be dependent on the substrate temperature and material. By using the poly-Si films, the first model pn+ junction solar cell without anti-reflecting (AR) coating has been prepared on an unpolished heavily phosphorus-doped Si wafer, with an energy conversion efficiency of 4.54% (AM 1.5, 100 mW/cm2, 1 cm2).  相似文献   

13.
In the present paper, the authors discuss the application of amorphous p–i–n solar cells containing i-layers which are deposited at high substrate temperatures as top cells in amorphous silicon/microcrystalline silicon tandem (“micromorph”) solar cells. Increasing the substrate temperature for the deposition of intrinsic a-Si : H results in a reduced optical gap. The optical absorption is enhanced and thereby the current generation. A high-current generation within a relatively thin amorphous top cell is very interesting in the context of micromorph tandem cells, where the amorphous top cell should contribute a current of at least 13 mA/cm2 for a total cell current density of 26 mA/cm2. A detailed study of the intrinsic material deposited by VHF-GD at 70 MHz at substrate temperatures between 220°C and 360°C is presented, including samples deposited from hydrogen-diluted silane plasmas. The stability of the films against light soaking is investigated employing the μ0τ0 parameter, which has been shown to be directly correlated to the cell performance. The paper discusses in detail the technological problems arising from the insertion of i-layers deposited at high substrate temperatures into solar cells. These problems are specially pronounced in the case of cells in the p–i–n (superstrate) structure. The authors demonstrate that an appropriate interface layer at the p/i-interface can largely reduce the detrimental effects of i-layer deposition at high temperatures. Finally, the application of such optimized high-temperature amorphous cells as top cells in micromorph tandem cells is discussed. Current densities of 13 mA/cm2 in the top cell are available with a top cell i-layer thickness of only 250 nm.  相似文献   

14.
Effect of spatial variation of incident monochromatic light on spectral response of an n+–p–p+ silicon solar cell and determination of diffusion length of minority carriers (Lb) in the base region and the thickness of the apparent dead layer (xd) in the n+ emitter from the spectral response have been investigated. Spectral response of a few 10 cm diameter and 10×10 cm2 pseudo-square silicon solar cells was measured with the help of a standard silicon solar cell of 2×2 cm2 area in 400–1100 nm wavelength range. Different areas (4, 9, 16, 25 and total area 78.6 or 96 cm2) were exposed. The effect of the radial variation of incident radiation was determined quantitatively by defining a parameter f1 as the ratio of the average intensity falling on the reference cell to that on the exposed area of the test cell. The value of f1 varied between 1 and 1.15 (1.25) as the exposed area of the cell varied from 4 cm2 to 78.6 (96) cm2 indicating that the spatial inhomogeneity of intensity increased with the increase in the exposed cell area. Short-circuit current densities, Jsc, computed from spectral response data for AM1.5 spectrum were less compared to the directly measured values by a factor which was nearly equal to f1. However, radial variation of intensity does not affect the determination of diffusion length of minority carriers in the base region (by the long wavelength spectral response, LWSR method using the measured spectral response data in 0.85<λ<1.05 μm range) and the thickness of the dead layer (by the method of Singh et al. using the data of 0.45<λ<0.65 μm range) significantly.  相似文献   

15.
Luminescent porous silicon (PS) was prepared for the first time using a spraying set-up, which can diffuse in a homogeneous manner HF solutions, on textured or untextured (1 0 0) oriented monocrystalline silicon substrate. This new method allows us to apply PS onto the front-side surface of silicon solar cells, by supplying very fine HF drops. The front side of N+/P monocrystalline silicon solar cells may be treated for long periods without altering the front grid metallic contact. The monocrystalline silicon solar cells (N+/P, 78.5 cm2) which has undergone the HF-spraying were made with a very simple and low-cost method, allowing front-side Al contamination. A poor but expected 7.5% conversion efficiency was obtained under AM1 illumination. It was shown that under optimised HF concentration, HF-spraying time and flow HF-spraying rate, Al contamination favours the formation of a thin and homogeneous hydrogen-rich PS layer. It was found that under optimised HF-spraying conditions, the hydrogen-rich PS layer decreases the surface reflectivity up to 3% (i.e., increase light absorption), improves the short circuit current (Isc), and the fill factor (FF) (i.e., decreases the series resistance), allowing to reach a 12.5% conversion efficiency. The dramatic improvement of the latter is discussed throughout the influence of HF concentration and spraying time on the IV characteristics and on solar cells parameters. Despite the fact that the thin surfae PS layer acts as a good anti-reflection coating (ARC), it improves the spectral response of the cells, especially in the blue-side of the solar spectrum, where absorption becomes greater, owing to surface band gap widening and conversion of a part of UV and blue light into longer wavelengths (that are more suitable for conversion in a Si cell) throughout quantum confinement into the PS layer.  相似文献   

16.
Optical confinement effect of thin-film polycrystalline-Si (poly-Si) solar cell on glass substrate fabricated at low-temperature has been investigated as a function of cell thickness of less than 5 μm. We found that it is possible to fabricate the textured Si thin film in situ on a glass substrate and that the reflectance at long-wavelength light is reduced by surface texturing. Thin-film poly-Si solar cell and a-Si:H/(0.45 μm)/poly-Si (5 μm) tandem solar cell exhibit the efficiency of 8.6% and 12.8%, respectively. The numerical study in terms of the light trapping explains the excellent high short-circuit current density (sc above 27 mA/cm2 at the 4.7 μm thin-film poly-Si solar cell.  相似文献   

17.
Contact resistivities of TiN and Ti---TiN contacts on a shallow junction solar-cell-type silicon substrate have been investigated. The contact materials were sputter-deposited. The method of the transmission line model was applied for contact resistivity measurements. The contact resistivity of the n+Si---TiN contact system was 2 × 10−3 Ωcm2 ± 50 per cent and remained constant after annealing up to 700°C for 30 min. For the n+Si---Ti---TiN system, the contact resistivity of 9 × 10−4 Ωcm2 ± 50 per cent was measured. A heat treatment of 700°C. 30 min decreases this value by one order of magnitude and the interposed Ti fully reacts with Si and forms a TiSi2 layer. The voltage drop caused by the n+Si---TiN contact system in a standard non-concentrator solar cell is negligible. The n+Si---TiSi2---TiN contact system should be acceptable for Si solar cells used at up to 100 times solar concentration.  相似文献   

18.
Polycrystalline Cd1−xZnxTe solar cells with efficiency of 8.3% were grown by cathodic electrodeposition on glass/ITO/CdS substrates using non-aqueous ethylene glycol bath. The deposit is characterised versus the process conditions by XRD and found to possess a preferred (1 1 1) orientation on Sb doping in the electroplating bath. The surface morphology of the deposit is studied using atomic force microscope. The average RMS roughness for the ternary film was higher than that for the binary CdTe. Optical properties of the films were carried out to study the band gap and calculation of molar concentration ‘x’. The effects of Sb doping in CdS/Cd1−xZnxTe heterojunctions have been studied. The short circuit current density (c) was found to improve and series resistance (Rs) reduced drastically upon Sb doping. This improvement in Jsc is attributed to an increase in quantum efficiency. The evaluation of solar cell parameters was also carried out using the current–voltage characteristics in dark and illumination. The best results were obtained when 2×10−3 M ZnCl2 along with antimony were present in the deposition bath. Under AM 1.5 conditions the open circuit voltage, short circuit current density, and fill factor of our best cell were Voc=600 mV, Jsc=26.66 mA/cm2, FF=0.42 and efficiency, η=8.3%. The carrier concentration and built-in potential of Cd1−xZnxTe calculated from Mott–Schottky plot was 2.72×1017 cm−3 and 1.02 eV.  相似文献   

19.
a-SiOx films have been prepared using silane and pure oxygen as reactive gases in plasma CVD system. Diborane was introduced as a doping gas to obtain p-type conduction silicon oxide. Infrared absorption spectra show the incorporation of Si–O stretch mode around 1000 cm−1. The optical bandgap increases with the oxygen to silane gas ratio, while the electrical conductivity decreases. Hydrogenated amorphous silicon solar cells have been fabricated using p-type a-SiOx with around 1.85 eV optical bandgap and conductivity greater than 10−7 S/cm. The measured current–voltage characteristics of the solar cells under 100 mW/cm2 artificial light are Voc=0.84 V, Jsc=14.7 mA/cm2, FF=0.635 with a conversion efficiency of 7.84%.  相似文献   

20.
One of the possible optimized device designs far silicon solar cell photocurrent enhancement, consists of a cell having an inserted sub-structure with extrinsic gap levels. A middle-gap impurity and defect level band may actually allow a two infrared photon absorption. The junction near local defect layer design (Li et al., 1992) was assumed to enhance the sub-band-gap light absorption but it also enhances the recombination mechanisms strongly. Kuznicki (1993) has proposed another design with an L-H interface insertion at the edges of a continuous sub-structure to avoid extra recombination. The maximal photocurrent due to an additional infrared absorption calculated in this way is smaller than ΔIph = 16.8 mA cm−2. In the case when the widths of the absorbing sub-structure are negligible compared to the width of the emitter, the simulated maximal efficiency can vary from 30.87 mW cm−2 to 40.51 mW cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号