首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: The effect of ethanol and formate radicals on the major proteins of human erythrocyte membranes has been investigated. MATERIALS AND METHODS: Human erythrocyte ghosts and of erythrocyte ghosts stripped of peripheric proteins were irradiated in phosphate buffer with 100 mmol dm(-3) ethanol or 100 mmol dm(-3) formate under N2 or N2O. The alterations of the proteins were investigated by SDS-polyacrylamide gel electrophoresis and high-performance gel permeation chromatography. RESULTS: In contrast to previous results on ribonuclease and on serum albumin the ethanol radicals were found to have a higher efficiency to damage erythrocyte membrane proteins than the formate radicals. Spectrin (Bands 1 and 2) and capnophorin (Band 3) showed the highest radiation-induced loss of all membrane proteins. When cysteamine or dithiothreitol were added to the erythrocyte ghosts with a similar OH-scavenging capacity as ethanol or formate, no degradation or aggregation of the membrane proteins could be observed even after a dose as high as 1800 Gy. CONCLUSIONS: The results of this study confirm the high radiosensitivity of spectrin and capnophorin to primary radicals. Similarly to soluble proteins, membrane-associated proteins are more significantly damaged by ethanol radicals than by formate radicals.  相似文献   

2.
In previous work, we have shown that the ionic strength-mediated differences found for the hydrodynamic dimensions of the human erythrocyte spectrin are not caused by secondary structural changes, but are caused more probably by subtle changes in tertiary interactions (LaBrake, C. C., Wang, L., Keiderling, T. A., and Fung, L. W.-M. (1993) Biochemistry 32, 10296-10302.). The substructure of spectrin has been suggested to be composed largely of triple alpha-helical bundle structural domains in tandem. In the present study, we used fluorescence and circular dichroism methods to study ionic strength effects on intact spectrin dimers and on recombinant peptides of spectrin domains of different lengths. We observed little ionic strength effect on the thermal unfolding temperature, Tm, values in these systems. However, we found that ionic strength-induced cooperativity in the unfolding processes was similar for the spectrin dimer and for peptides with two or three domains, as measured by entropy changes (DeltaSm). Although single-domain peptides exhibited rather variable DeltaSm values, depending on the specific domain, they showed little salt effects on the DeltaSm values themselves. This suggests that spectrin undergoes subtle ionic strength-induced conformational changes, probably near the interdomain regions of the molecule. These conformational changes may be responsible for the observed hydrodynamic and unfolding properties in intact spectrin under different ionic strength conditions. We suggest that recombinant peptides of various lengths may serve as models for studying the structural flexibility in spectrin.  相似文献   

3.
Methylamine dehydrogenase (MADH) and amicyanin form a physiologic complex within which electrons are transferred from the tryptophan tryptophylquinone (TTQ) cofactor of MADH to the type 1 copper of amicyanin. Interactions responsible for complex formation may be inferred from the crystal structures of complexes of these proteins. Site-directed mutagenesis has been performed to probe the roles of specific amino acid residues of amicyanin in stabilizing the MADH-amicyanin complex and determining the observed ionic strength dependence of complex formation. Conversion of Phe97 to Glu severely disrupted binding, establishing the importance of hydrophobic interactions involving this residue. Conversion of Arg99 to either Asp or to Leu increased the Kd for complex formation by 2 orders of magnitude at low ionic strength, establishing the importance of ionic interactions which were inferred from the crystal structure involving Arg99. Conversion of Lys68 to Ala did not disrupt binding at low ionic strength, but it did greatly diminish the observed ionic strength dependence of complex formation that is seen with wild-type amicyanin. These results demonstrate that the physiologic interaction between MADH and amicyanin is stabilized by a combination of ionic and van der Waals interactions and that individual amino acid residues on the protein surface are able to dictate specific interactions between these soluble redox proteins. These results also indicate that the orientation of MADH and amicyanin when they react with each other in solution is the same as the orientation of the proteins which is seen in the structure of the crystallized protein complex.  相似文献   

4.
An optimized protocol of Southwestern analysis for detection of Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1) binding to the origin of viral replication (oriP) was described. The unique feature of this optimized protocol includes the restoration of the denatured proteins to native conformation after SDS-polyacrylamide gel electrophoresis and blocking of nonspecific and low-affinity binding sites prior to DNA binding. The parameters and conditions that may affect the specific interaction of EBNA-1 to oriP DNA were then determined. The specific binding was affected by divalent cations (MgCl2) and ionic strength; the optimal concentrations of MgCl2 and NaCl were observed at 10 and 300 mM, respectively. The various buffer systems and pH values tested had no apparent effect on EBNA-1 binding. Under the optimal conditions, a single protein of 68 Kd was detected and the bindings of other nonspecific, low-affinity DNA-binding proteins were abolished. The authenticity and specificity of 68 Kd protein as EBNA-1 were determined by reaction with antibody specific for EBNA-1 and competition assay with specific DNA sequence. After optimization this technique can be a powerful and yet simple means of studying protein-DNA interactions and their roles in gene expression.  相似文献   

5.
The aim of our work was quantitative evaluation of the protein and phospholipid fractions of mature erythrocyte membranes separated from women with ovarian cancer. Blood was sampled from 30 women with ovarian cancer, aged 24-79 years, in the third stage of clinical progression of the disease. Phospholipids were separated from membranes by Müller's acidic extraction method and analysed in thin-layer two-dimensional chromatography. On the silica gel plates nine fractions of phospholipids were separated: sphingomyelin (SPH), phosphatidylethanolamine (PE), phosphatidlyserine (PS), phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidic acid (PA), phosphatidylinositol (Ptd Ins), phosphatidylinositol-4-phosphate (Ptd Ins-4-P), phosphatidylinositol-4,5-diphosphate (Ptd Ins-4,5-P2). The activity of phospholipase C in erythrocyte membranes was determined by Akhrem's spectrophotometric method. Membrane proteins were separated by polyacrylamide gel electrophoresis, SDS-PAGE. It was shown that PS, SPH, LPC and PA fractions were significantly diminished. The concentration of Ptd Ins-4-P and Ptd Ins-4,5-P2 was significantly increased with simultaneous reduction in Ptd Ins level. The inhibition of phospholipase C reached 80%. The quantitative protein evaluation showed a statistically significant decrease in spectrin and a significant increase in 4.1 protein. The quantitative changes, observed in phospholipid and protein fractions, led to the restructuring of the erythrocyte membrane cytoskeleton, which may be connected to increased susceptibility to haemolysis of red blood cells.  相似文献   

6.
The interaction of the linker histones H1 and H5 from chicken erythrocyte chromatin with pBR322 was studied as a function of the number of superhelical turns in circular plasmid molecules. Supercoiled plasmid DNA was relaxed with topoisomerase I so that a population with a narrow distribution of topoisomers, containing from zero to five superhelical turns, was obtained. None of the topoisomers contained alternative non-B-DNA structures. Histone-DNA complexes formed at either 25 or 100 mM NaCl final concentration and at histone-DNA molar ratios ranging from 10 to 150 were analyzed by agarose gel electrophoresis. The patterns of disappearance of individual topoisomer bands from the gel were interpreted as an indication of preference of the linker histones for crossovers of double-helical DNA. This preference was observed at both salt concentrations, being more pronounced under conditions of low ionic strength. Isolated H5 globular domain also caused selective disappearance of topoisomers from the gel, but it did so only at very high peptide-DNA molar ratios. The observed preference of the linker histones for crossovers of double-helical DNA is viewed as a part of the mechanism involved in the sealing of the two turns of DNA around the histone octamer.  相似文献   

7.
The binding protein for Bacillus thuringiensis delta-endotoxin, CryIAa, from the brush border membrane of the midgut of Bombyx mori was purified by the dot blot method and delta-endotoxin affinity chromatography. The binding protein was purified to 235-fold enrichment from cholic acid extracts of brush border membranes from B. mori midgut by activated CryIAa-affinity chromatography and DEAE ion-exchange chromatography. The purified binding protein showed a single band of 180 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and this band specifically reacted to 125I-labeled CryIAa on Immobilon membrane. The affinity of the binding protein for CryIAa was equivalent to that of the brush border membrane vesicles and solubilized membrane proteins. Partial amino acid sequences of the binding protein showed sequence similarity to the cadherin-like binding protein for CryIAb from Manduca sexta, but not for CryIAc binding protein from M. sexta and Heliothis virescens.  相似文献   

8.
This paper analyzes proteins expressed in a mouse muscle precursor cell line (C2 myoblasts) and compares them with those observed in differentiated myotubes from the same cell line. We observed hundreds of proteins in myoblasts using IPG two-dimensional gel electrophoresis but this number is greatly reduced using Mini-Leak (divinylsulfone-activated agarose) affinity chromatography. Two kinds of affinity columns were prepared. One contained a chemically modified monomeric actin bound to the affinity matrix. The second matrix contained a high-affinity actin-binding protein (DNase I) which was bound to the actin Mini-Leak column to block specific sites on actin. Actin-binding proteins in homogenates of myoblasts or myotubes were passed through the affinity columns and eluted under high salt conditions. The Mini-Leak affinity medium itself appeared to have little ability to bind proteins. Our two-dimensional (2-D) gels identified a small number of proteins and we are currently focusing our attention on a particular protein spot which could correspond to cofilin. Comparison of myoblast and myotube proteins using affinity chromatography shows no qualitative, clearly identifiable differences but the analysis is still in progress. These findings are discussed in relation to reports in which the myoblast-myotube transformation was associated with the up-regulation or de novo synthesis of more than ten proteins.  相似文献   

9.
The cystic fibrosis ciliary inhibitor (CFCI) has been partially purified from serum and plasma of cystic fibrosis (CF) homozygotes and heterozygotes, and from media of cultured fibroblasts derived from cystic fibrosis genotypes. Characterization and comparison of fractions containing the CFCI were carried out by polyacrylamide gel electrophoresis. Gel electrophoresis confirmed previous molecular weight estimations of 4,500 to 11,000 for the CFCI and provided an estimate of the number of proteins present in the fractions. Low molecular weight proteins from serum and media were combined with IgG preparations. No specific binding to IgG by the media fraction containing the CFCI could be demonstrated by the techniques employed. There was decreased binding of the low molecular weight serum fraction containing CFCI to native IgG molecules from cystic fibrosis patients as compared to IgG from normal individuals. However, IgG from CF individuals demonstrated increased binding of the cfci-containing low molecular weight serum fraction after gel filtration in the presence of guanidinium chloride. This suggests: 1) that very low concentrations of CFCI are present in media fractions; and 2) that native CF IgG cannot bind the low molecular weight CFCI fractions to the same degree as native IgG from normals or CF IgG that has been dissociated from non-covalently bound components.  相似文献   

10.
Sodium dodecyl sulfate binds to S-carboxyamidomethyl-k-casein in a highly cooperative manner at a concentration near the critical micelle concentration, showing a strong dependence on ionic strength. The maximum number of sodium dodecyl sulfate molecules bound is attained above the critical micelle concentration, and is very close to the micelle aggregation number in the absence of protein. The binding sites on the protein for sodium dodecyl sulfate are localized mainly on para-k-casein part, which is a hydrophobic fragment of k-casein produced by rennin attack. The mode of the action of sodium dodecyl sulfate on S-carboxyamidomethyl-k-casein resembles that of several integral membrane proteins, rather than of water soluble proteins. On considering possible situations, it is suggested that the unusual interaction of S-carboxyamidomethyl-k-casein with sodium dodecyl sulfate is responsible for an anomalous migration of reduced k-casein observed in sodium dodecyl sulfate polyacrylamide gel electrophoresis. Further, the suggestion was made by the binding studies of sodium dodecyl sulfate and non-ionic detergents that the sites which were involved in self-association of S-carboxyamidomethyl-k-casein participated in the binding sites of detergents.  相似文献   

11.
Nonionic polyoxyethylene type detergents (CxEy) are widely used to solubilize and purify membrane proteins. The detergent hydrophobic moiety (Cx) replaces phospholipids at exposed hydrophobic regions of the membrane proteins. During chromatography on an immobilized anti-Kell antibody to purify Kell protein (an integral erythrocyte protein), it was observed that the size of the polar head of an non ionic detergent added to the mobile phase appeared to influence the interaction of the detergent-protein complex with the immobilized antibody. Further studies were performed using another erythrocyte membrane protein, Glycophorin C and three anti-GPC monoclonal antibodies directed against three epitopes of the extracytoplasmic domain of the protein. The interaction of GPC with the three Protein A-coupled monoclonal antibodies was studied in the presence of three detergents C12E<9>, C13E<15> and C12E<23>. It was observed in batch mode and in column chromatography experiments that the adsorption of GPC to the immunoaffinity supports decreased as the size of the detergent polar head increased. Thus, the polyoxyethylene chain of a detergent might prevent the interaction of the detergent-protein complex with the immobilized antibody.  相似文献   

12.
1. Crossed immunoelectrophoresis was used for extensive characterization of individual proteins of human erythrocyte membranes solubilized in non-ionic detergent. 2. The precipitates were assigned to extrinsic or intrinsic proteins. 3. Four glycoproteins were identified by their lectin binding behaviour, whilst five proteins were affected by neuraminidase, indicating them to be sialoglycoproteins. 4. Enzymatic activity is retained in the solubilized system and the presence of acetylcholinesterase and an ATPase was demonstrated. The formation of phosphorylated membrane proteins on incubation with [32P]ATP was demonstrated by autoradiography on the immunoelectrophoresis plates. 5. Five proteins located on the outer cell surface were identified by antibody binding to intact cells. These same proteins were degraded by proteolytic enzymes in intact cells but only three of them were labelled by lactoperoxidase-catalysed 125I-iodination. 6. Analysis of erythrocyte membrane proteins using quantitive immunoelectrophoresis yields results concordant with those obtained by dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

13.
The interactions of the related zinc finger proteins WT1 and EGR1 with DNA have been investigated using a quantitative binding assay. A recombinant peptide containing the four zinc fingers of WT1 binds to the dodecamer DNA sequence GCG-TGG-GCG-TGT with an apparent dissociation constant (Kd) of (1.14 +/- 0.09) x 10(-9) M under conditions of 0.1 M KCl, pH 7.5, at 22 degrees C. Under the same conditions, a recombinant peptide containing the three zinc fingers of EGR1 binds to the dodecamer sequence, the first nine bases comprising the EGR consensus binding site, with an apparent Kd of (3.55 +/- 0.24) x 10(-9) M. The nature of the equilibrium binding of each peptide to DNA was investigated as a function of temperature, pH, monovalent salt concentration, and divalent salt concentration. The interaction of WT1 with DNA is an entropy-driven process, while the formation of the EGR1-DNA complex is favored by enthalpy and entropy. The DNA binding activities of both proteins have broad pH optima centered at pH 8.0. The binding of both proteins to DNA shows similar sensitivity to ionic strength, with approximately 7.7 +/- 0.8 ion pairs formed in the EGR1-DNA complex and 9.2 +/- 1.8 ion pairs formed in the WT1-DNA complex. Results of measuring the effects of point mutations in the DNA binding site on the affinity of WT1 and EGR1 indicates a significant difference in the optimal binding sites: for EGR1, the highest affinity binding site has the sequence GNG-(T/G)GG-G(T/C)G, while for WT1 the highest affinity binding site has the sequence G(T/C)G-(T/G)GG-GAG-(T/C)G(T/C).  相似文献   

14.
Phosphatidylcholine dispersed on Celite was rapidly solubilized by neutral bovine serum albumin solutions. Stable protein-lipid complexes were isolated by Agrose gel filtration or by ultracentrifugal flotation in high density solvents, and the physicochemical properties of the complexes were investigated in terms of the stoichiometry of binding, effect of fatty acid ligands on phosphatidylcholine binding, effect of high ionic strength on the stability of the complexes, intrinsic fluorescence and circular dichroism spectra, and sedimentation velocity coefficients. Complexes containing from 2 to 30 phosphatidylcholine molecules per protein molecule were observed; however, no saturation of binding sites could be detected in this range of molar ratios. Oleic acid binding by serum albumin prevents interaction of the protein with phosphatidylcholine, indicating possible competition of these ligands at low contents of the phospholipid. For molar ratios of up to 10 phosphatidylcholine molecules per serum albumin, binding is primarily due to hydrophobic interactions that have no effect on the overall shape and secondary structure of the native protein except for local modifications at tryptophan residues, whose fluorescence becomes quenched and blue shifted on phosphatidylcholine binding. Similar phosphatidylcholine uptake experiments performed with a series of globular proteins indicated that the lipid extraction from Celite surfaces is a non-specific process, accelerated by several other proteins (e.g. aldolase, egg albumin, chymotrypsinogen, soybean trypsin inhibitor, and the major apolipoprotein from bovine serum high density lipoprotein). Formation of stable protein-lipid complexes, however, was only observed with bovine serum albumin, which in contrast to the other proteins is known to have affinity binding sites for anions with hydrophobic side chains.  相似文献   

15.
Melanin synthesis in mammals is catalyzed by three structurally related, membrane-bound proteins, tyrosinase, and the tyrosinase-related proteins 1 and 2 (TRP1 and TRP2). Current evidence suggests that in vivo these proteins may form a multienzyme complex. However, neither the precise composition of the complex, nor the specific interactions between its components have been characterized. This study used purified preparations of tyrosinase and TRP1 to analyze their interactions in non ionic detergent solution. Purified tyrosinase and TRP1 behaved as homodimers as judged by gel filtration chromatography and electrophoresis. Upon mixing of the purified proteins, the preferential formation of heterodimers was detected by: i) coelution in gel filtration chromatography with a shift to a common partition coefficient for both proteins, and ii) the occurrence of fluorescent energy transfer between fluorescein-labeled tyrosinase and rhodamine-labeled TRP1. However, the formation of heterodimers did not cause changes in the tyrosine hydroxylase activity of the enzymes, at least under standard assay conditions. Thus, tyrosinase and TRP1 interact strongly and specifically in detergent solution to form an heterodimer that might contribute to the formation of the melanogenic complex.  相似文献   

16.
Insights into the structural basis of protein-protein recognition have come principally from the analysis of proteins such as antibodies, hormone receptors, and proteases that bind their ligands with relatively high affinity (Ka approximately 10(9) M-1). In contrast, few studies have been done on the very low affinity interactions mediating cell adhesion and cell-cell recognition. As a site of protein-protein recognition, the ligand binding face of the T lymphocyte cell-cell recognition molecule, CD2, which binds its ligands 10(4)- to 10(5)-fold more weakly than do antibodies and proteases, is unusual in being both very flat and highly charged. An analysis of the effect of mutations and ionic strength on CD2 binding to its ligand, CD48, indicates that these charged residues contribute little, if any, binding energy to this interaction. However, the loss of these charged residues is shown to markedly reduce ligand-binding specificity. Thus, the charged residues increase the specificity of CD2 binding without increasing the affinity. This phenomenon is likely to result from a requirement for electrostatic complementarity between charged binding surfaces to compensate for the removal, upon binding, of water interacting with the charged residues. It is proposed that this mode of recognition is highly suited to biological interactions requiring a low affinity because it uncouples increases in specificity from increases in affinity.  相似文献   

17.
Homologues of two major components of the well-characterized erythrocyte plasma-membrane-skeleton, spectrin (a not-yet-cloned isoform, betaI Sigma* spectrin) and ankyrin (AnkG119 and an approximately 195-kDa ankyrin), associate with the Golgi complex. ADP ribosylation factor (ARF) is a small G protein that controls the architecture and dynamics of the Golgi by mechanisms that remain incompletely understood. We find that activated ARF stimulates the in vitro association of betaI Sigma* spectrin with a Golgi fraction, that the Golgi-associated betaI Sigma* spectrin contains epitopes characteristic of the betaI Sigma2 spectrin pleckstrin homology (PH) domain known to bind phosphatidylinositol 4,5-bisphosphate (PtdInsP2), and that ARF recruits betaI Sigma* spectrin by inducing increased PtdInsP2 levels in the Golgi. The stimulation of spectrin binding by ARF is independent of its ability to stimulate phospholipase D or to recruit coat proteins (COP)-I and can be blocked by agents that sequester PtdInsP2. We postulate that a PH domain within betaI Sigma* Golgi spectrin binds PtdInsP2 and acts as a regulated docking site for spectrin on the Golgi. Agents that block the binding of spectrin to the Golgi, either by blocking the PH domain interaction or a constitutive Golgi binding site within spectrin's membrane association domain I, inhibit the transport of vesicular stomatitis virus G protein from endoplasmic reticulum to the medial compartment of the Golgi complex. Collectively, these results suggest that the Golgi-spectrin skeleton plays a central role in regulating the structure and function of this organelle.  相似文献   

18.
The binding of native cytochrome c to negatively charged lipid dispersions of dioleoyl phosphatidylglycerol has been studied over a wide range of ionic strengths. Not only is the strength of protein binding found to decrease rapidly with increasing ionic strength, but also the binding curves reach an apparent saturation level that decreases rapidly with increasing ionic strength. Analysis of the binding isotherms with a general statistical thermodynamic model that takes into account not only the free energy of the electrostatic double layer, but also the free energy of the surface distribution of the protein, demonstrates that the apparent saturation effects could arise from a competition between the out-of-plane binding reaction and the lateral in-plane interactions between proteins at the surface. It is found that association with nonlocalized sites results in binding isotherms that display the apparent saturation effect to a much more pronounced extent than does the Langmuir adsorption isotherm for binding to localized sites. With the model for nonlocalized sites, the binding isotherms of native cytochrome c can be described adequately by taking into account only the entropy of the surface distribution of the protein, without appreciable enthalpic interactions between the bound proteins. The binding of cytochrome c to dioleoyl phosphatidylglycerol dispersions at a temperature at which the bound protein is denatured on the lipid surface, but is nondenatured when free in solution, has also been studied. The binding curves for the surface-denatured protein differ from those for the native protein in that the apparent saturation at high ionic strength is less pronounced. This indicates the tendency of the denatured protein to aggregate on the lipid surface, and can be described by the binding isotherms for nonlocalized sites only if attractive interactions between the surface-bound proteins are included in addition to the distributional entropic terms. Additionally, it is found that the binding capacity for the native protein is increased at low ionic strength to a value that is greater than that for complete surface coverage, and that corresponds more closely to neutralization of the effective charge (determined from the ionic strength dependence), rather than of the total net charge, on the protein. Electron spin resonance experiments with spin-labeled lipids indicate that this different mode of binding arises from a penetration or disturbance of the bilayer surface by the protein that may alleviate the effects of in-plane interactions under conditions of strong binding.  相似文献   

19.
Ankyrins are a family of adapter molecules that mediate linkages between integral membrane and cytoskeletal proteins. Such interactions are crucial to the polarized distribution of membrane proteins in transporting epithelia. We have cloned and characterized a novel 190-kDa member of this family from a rat kidney cDNA library, which we term AnkG190 based on the predicted size and homology with the larger neuronal AnkG isoform. AnkG190 displays a unique 31-residue amino terminus, a repeats domain consisting of 24 repetitive 33-residue motifs, a spectrin binding domain, and a truncated regulatory domain. Probes derived from the unique amino terminus hybridize to an 8-kilobase message exclusively in kidney and lung and specifically to the kidney outer medullary collecting ducts by in situ hybridization. Transfections of Madin-Darby canine kidney and COS-7 epithelial cell lines with a full-length AnkG190 construct result in (a) expression at the lateral plasma membrane, (b) functional assembly with the cytoskeleton, and (c) interaction with at least one membrane protein, the Na,K-ATPase. Two independent Na,K-ATPase binding domains on AnkG190 are demonstrated as follows: one within the distal 12 ankyrin repeats, and a second site within the spectrin binding domain. Thus, ankyrins may interact with integral membrane proteins in a pleiotropic manner that may involve complex tertiary structural determinants.  相似文献   

20.
Spectrin is a long flexible rod-like actin cross-linking protein mostly comprised of many tandem homologous 106-residue motifs. In this study, the conformational stability and physical properties of a single homologous motif peptide, alpha1, were evaluated and compared to intact spectrin monomers and alphabeta heterodimers. It is interesting that while spectrin dimers elongate by about 3-fold in low ionic strength buffers relative to their size in physiological buffers, the single-motif peptide does not show significant changes in secondary structure in 10 mM phosphate buffer compared with isotonic buffer. This single-motif peptide is monomeric in physiological buffer as demonstrated by equilibrium sedimentation studies, and its hydrodynamic radius determined by gel filtration and dynamic light scattering of about 2.2 nm is consistent with an elongated rod-like shape. Unfolding of the single-motif peptide in urea solutions was similar to unfolding of intact heterodimers. Differential scanning calorimetry analyses showed that this single motif undergoes a reversible two-state transition with a Tm of 53 degrees C and an enthalpy of 65 kcal/mol in physiological buffer. Thermal stability was unaffected by ionic strength changes, but was decreased below physiological pH. These data show that this 13 kDa spectrin motif is a monomeric, highly stable, triple-helical, independently folding protein building block with physical characteristics that define many of the structural properties of the 526 kDa spectrin heterodimer. In contrast, interactions between adjacent motifs are probably responsible for spectrin's molecular flexibility and elasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号