首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The classic approach to the recycling of Pu in PWR is to use mixed U-oxide Pu-oxide (MOX) fuel. The mono-recycling of plutonium in PWR transmutes less than 30% of the loaded plutonium, providing only a limited reduction in the long-term radiotoxicity and in the inventory of TRU to be stored in the repository. The primary objective of this study is to assess the feasibility of plutonium recycling in PWR in the form of plutonium hydride, PuH2, mixed with uranium and zirconium hydride, ZrH1.6, referred to as PUZH, that is loaded uniformly in each fuel rod. The assessment is performed by comparing the performance of the PUZH fueled core to that of the MOX fueled core. Performance characteristics examined are transmutation effectiveness, proliferation resistance of the discharged fuel and fuel cycle economics. The PUZH loaded core is found superior to the MOX fueled core in terms of the transmutation effectiveness and proliferation resistance. For the reference cycle duration and reference fuel rod diameter and pitch, the percentage of the plutonium loaded that is transmuted in one recycle is 53% for PUZH versus 29% for MOX fuel. That is, the net amount of plutonium transmuted in the first recycle is 55% higher in cores using PUZH than in cores using MOX fuel. Relative to the discharged MOX, the discharged PUZH fuel has smaller fissile plutonium fraction - 45% versus 60%, 15% smaller minor actinides (MA) inventory and more than double spontaneous fission neutron source intensity and decay heat per gram of discharged TRU. Relative to the MOX fuel assembly, the radioactivity of the PUZH fuel assembly is 26% smaller and the decay heat and the neutron yield are only 3% larger. The net effect is that the handling of the discharged PUZH fuel assembly will be comparable in difficulty to that of the discharged MOX assembly while the proliferation resistance of the TRU of the discharged PUZH fuel is enhanced.  相似文献   

2.
根据我国核电发展现状和中长期发展规划及中长期(2030、2050)发展战略研究,假设2050年前我国压水堆核电发展规模,基于压水堆乏燃料后处理,回收的钚做成MOX燃料放入压水堆中使用,MOX燃料只使用1次的循环模式,进行核能发展情景研究。基于压水堆可装载30%比例MOX燃料的已有研究结果,考虑我国主要的两种压水堆堆型M310和AP1000,进行压水堆核燃料循环分析。利用核能发展情景动态分析程序DESAE-2,给出了不同情景模式下天然铀需求量、乏燃料累计量等。结果表明:至2050年,B1和B2模式较A模式分别节省天然铀4.1万t和2.9万t。  相似文献   

3.
《Annals of Nuclear Energy》2002,29(16):1953-1965
The use of uranium–plutonium mixed oxide fuel (MOX) in light water reactors (LWR) is nowadays a current practice in several countries. Generally 1/3 of the reactor core is loaded with MOX fuel assemblies and the other 2/3 with uranium assemblies. Nevertheless the plutonium utilization could be more effective if the full core could be loaded with MOX fuel. In this paper the design of a boiling water reactor (BWR) core fully loaded with an overmoderated MOX fuel design is investigated. The design of overmoderated BWR MOX fuel assemblies based on a 10×10 lattice are developed, these designs improve the neutron spectrum and the plutonium consumption rate, compared with standard MOX assemblies. In order to increase the moderator to fuel ratio two approaches are followed: in the first approach, 8 or 12 fuel rods are replaced by water rods in the 10×10 lattice; in the second approach, an 11×11 lattice with 24 water rods is designed with an active fuel length very close to the standard MOX assembly. The results of the depletion behavior and the main steady state core parameters are presented. The feasibility of a full core loaded with the 11×11 overmoderated MOX fuel assembly is verified. This design take advantage of the softer spectrum comparable to the 10×10 lattice with 12 water rods but with thermal limits comparable to the standard MOX fuel assembly.  相似文献   

4.
CANDU堆先进燃料循环的展望   总被引:10,自引:6,他引:4  
谢仲生 Bocza.  P 《核动力工程》1999,20(6):560-565,575
介绍CANDU堆的天然铀燃料循环以及最近开发的适合未来近期的先进燃料循环。高中子经济性,不停堆换料以及简单的燃料束设计,使得CANDU堆具有非常优良的燃料循环灵活性和多样性。  相似文献   

5.
The difficulty of applying the existing critical heat flux correlations to the design of a modified 100% mixed plutonium uranium oxide fuelled assembly are outlined. A core with increased moderating ratio (RMA) was designed. The purpose of this design modification is to permit the consumption of large amounts of plutonium which cannot be burned in a conventional pressurized water reactor (PWR) owing to safety considerations. The design criteria required that the minimum departure from nucleate boiling ratio (DNBR) in the modified fuel does not exceed the value of the standard N4 PWR, which served the basis for the design. The desired conditions were achieved by reducing the fuel pin diameter to increase the moderating ratio and increasing the number of grids with mixing vanes to improve the minimum DNBR in the modified assembly. The design methodology and some of the proposed design options are presented.  相似文献   

6.
The breeding potential in the irradiation channels of research reactors is of safeguards concern, because of lacking continuous supervision on the type of experiments in all the irradiation channels. Moreover, the irradiation time can be optimized in order to breed high quality weapon grade plutonium. With regard to the safeguards measures currently adopted, IAEA concentrates its efforts on those reactors whose thermal power is greater than 25 MWth, because it was calculated that a 25 MWth LEU-fuelled reactor produces not more than one Significant Quantity of Pu (8 kg)/year in its spent fuel and a HEU-fuelled reactor of this power would require an annual reload of not more than one Significant Quantity of U235 (25 kg). In order to investigate whether it would be possible to determine an analogous power level threshold to estimate the clandestine plutonium production capability of different research reactors, the Monte Carlo method was used to determine the neutron flux in the irradiation channels and to calculate the plutonium breeding potential for three different reactor types: (1) a Triga Mark II with 250 kWth, representative for a small size research reactor; (2) a Material Test Reactor (MTR) with 5 MWth, representative for a medium size research reactor; (3) a High Flux Reactor (HFR) with 45 MWth, representative for a large size research reactor. It was observed that the most important factors for plutonium breeding are the neutron flux (to which reaction rates are proportional) and the available space to place irradiation samples. The breeding capability scales fairly well with the reactor power level and from about 10 MWth onwards the proliferation concern raises with increasing power level and available sample space.  相似文献   

7.
《Annals of Nuclear Energy》2005,32(16):1750-1781
In 1966, Philadelphia Electric has put into operation the Peach Bottom I nuclear reactor, it was the first high temperature gas reactor (HTGR); the pioneering of the helium-cooled and graphite-moderated power reactors continued with the Fort St. Vrain and THTR reactors, which operated until 1989. The experience on HTGRs lead General Atomics to design the gas turbine – modular helium reactor (GT-MHR), which adapts the previous HTGRs to the generation IV of nuclear reactors. One of the major benefits of the GT-MHR is the ability to work on the most different types of fuels: light water reactors waste, military plutonium, MOX and thorium. In this work, we focused on the last type of fuel and we propose a mixture of 40% thorium and 60% uranium. In a uranium–thorium fuel, three fissile isotopes mainly sustain the criticality of the reactor: 235U, which represents the 20% of the fresh uranium, 233U, which is produced by the transmutation of fertile 232Th, and 239Pu, which is produced by the transmutation of fertile 238U. In order to compensate the depletion of 235U with the breeding of 233U and 239Pu, the quantity of fertile nuclides must be much larger than that one of 235U because of the small capture cross-section of the fertile nuclides, in the thermal neutron energy range, compared to that one of 235U. At the same time, the amount of 235U must be large enough to set the criticality condition of the reactor. The simultaneous satisfaction of the two above constrains induces the necessity to load the reactor with a huge mass of fuel; that is accomplished by equipping the fuel pins with the JAERI TRISO particles. We start the operation of the reactor with loading fresh fuel into all the three rings of the GT-MHR and after 810 days we initiate a refueling and shuffling schedule that, in 9 irradiation periods, approaches the equilibrium of the fuel composition. The analysis of the keff and mass evolution, reaction rates, neutron flux and spectrum at the equilibrium of the fuel composition, highlights the features of a deep burn in-core fuel management strategy for a uranium–thorium fuel.  相似文献   

8.
In this paper, a fusion fission hybrid reactor used for energy producing is proposed based on the situation of nuclear power in China. The pressurized light water is applied as the coolant. The fuel assemblies are loaded in the pressure tubes with a modular type structure. The neutronics analysis is performed to get the suitable design and prove the feasibility. The energy multiplication and tritium self-sustaining are evaluated. The neutron load is also cared. From different candidates, the PWR spent fuel is selected as the feed fuel. The results show that the hybrid reactor can meet the expected reactor core lifetime of 5 years with 1000 MWe power output. Two ways are discussed including burning the discharged PWR spent fuel and burning the reprocessed plutonium. The energy multiplication is big enough and the tritium can be self-sustaining for both of the two ways. The neutron wall load in the operating time is kept smaller than the one of ITER. The way to use the reprocessed plutonium brings low neutron wall load, but also brings additional difficulties in operating the hybrid reactor. The way to use the discharged spent fuel is proposed to be a better choice currently.  相似文献   

9.
Thorium (Th) oxide fuel offers a significant advantage over traditional low-enriched uranium and mixed uranium/plutonium oxide (MOX) fuel irradiated in a Light Water Reactor. The benefits of using thorium include the following: 1) unlike depleted uranium, thorium does not produce plutonium, 2) thorium is a more stable fuel material chemically than LEU and may withstand higher burnups, 3) the materials attractiveness of plutonium in Th/Pu fuel at high burnups is lower than in MOX at currently achievable burnups, and 4) thorium is three to four times more abundant than uranium. This paper quantifies the irradiation of thorium fuel in existing Light Water Reactors in terms of: 1) the percentage of plutonium destroyed, 2) reactivity safety parameters, and 3) material attractiveness of the final uranium and plutonium products. The Monte Carlo codes MCNP/X and the linkage code Monteburns were used for the calculations in this document, which is one of the first applications of full core Monte Carlo burnup calculations. Results of reactivity safety parameters are compared to deterministic solutions that are more traditionally used for full core computations.Thorium is fertile and leads to production of the fissile isotope 233U, but it must be mixed with enriched uranium or reactor-/weapons-grade plutonium initially to provide power until enough 233U builds in. One proposed fuel type, a thorium-plutonium mixture, is advantageous because it would destroy a significant fraction of existing plutonium while avoiding the creation of new plutonium. 233U has a lower delayed neutron fraction than 235U and acts kinetically similar to 239Pu built in from 238U. However, as with MOX fuel, some design changes may be required for our current LWR fleet to burn more than one-third a core of Th/Pu fuel and satisfy reactivity safety limits. The calculations performed in this research show that thorium/plutonium fuel can destroy up to 70% of the original plutonium per pass at 47 GWd/MTU, whereas only about 30% can be destroyed using MOX. Additionally, the materials attractiveness of the final plutonium product of irradiated plutonium/thorium fuel is significantly reduced if high burnups (∼94 GWD/MTU) of the fuel can be attained.  相似文献   

10.
Uranium plutonium mixed oxide (MOX) containing up to 30% plutonia is the conventional fuel for liquid metal cooled fast breeder reactor (LMFBR). Use of high plutonia (>30%) MOX fuel in LMFBR had been of interest but not pursued. Of late, it has regained importance for faster disposition of plutonium and also for making compact fast reactors. Some of the issues of high plutonia MOX fuels which are of concern are its chemical compatibility with liquid sodium coolant, dimensional stability and low thermal conductivity. Available literature information for MOX fuel is limited to a plutonium content of 30%. Thermodynamic assessment of mixed oxide fuels indicate that with increasing plutonia oxygen potential of the fuel increases and the fuel become more prone to chemical attack by liquid sodium coolant in case of a clad breach. In the present investigation, some of these issues of MOX fuel have been studied to evaluate this fuel for its use in fast reactor. Extensive work on the out-of-pile thermo-physical properties and fuel-coolant chemical compatibility under different simulated reactor conditions has been carried out. Results of these studies were compared with the available literature information on low plutonia MOX fuel and critically analyzed to predict in reactor behaviour of this fuel containing 44% PuO2. The results of these out-of-pile studies have been very encouraging and helped in arriving at a suitable and achievable fuel specification for utilization of this fuel in fast breeder test reactor (FBTR). As a first step of test pin irradiation programme in FBTR, eight subassemblies of the MOX fuel are undergoing irradiation in FBTR.  相似文献   

11.
Thorium can supplement the current limited reserves of uranium. In current study, analyses are performed for thorium based fuels in thermal neutron spectrum Super Critical Water Reactor (SCWR). Thorium based fuels are studied in two roles. First role being replacement of conventional uranium dioxide fuel while the other being burner of Reactor Grade Plutonium (RG-Pu) in thermal neutron spectrum SCWR. Coupled neutron physics/thermal hydraulics analyses are performed due to large density variation of coolant over the active fuel length. Analyses reveal that thorium-uranium MOX fuels lead to smaller burnup values as compared to equivalent enriched uranium dioxide but possess the advantage of smaller excess reactivity at Beginning of Life (BOL). This can lead to savings in the form of Burnable Poisons (BP). Smaller fuel average temperature values are obtained for thorium-uranium MOX fuels as compared to uranium dioxide fuel option. Coated fuel option utilizing mixed thorium-uranium mono nitride fuel can help further decrease fuel average temperature values for thorium based fuels. U-233, produced in thorium uranium fuels, contribution towards fission energy produced is smaller as compared to plutonium produced in conventional uranium dioxide fuel. In terms of proliferation resistance, approximately 40% less quantity of plutonium is produced for thorium-uranium MOX fuels (for studied compositions) as compared to equivalent enriched uranium dioxide fuel. But, there is not much difference between the discharged plutonium vector compositions. Thorium–Plutonium based fuels lead to significantly harder spectrum which results in larger spread in radial power density and eventually causes larger values for thermal hydraulic parameters like fuel and clad temperature. Due to almost no production of plutonium, thorium based fuels can be a very good option to burn RG-Pu in thermal spectrum SCWR. Thorium based fuels destroyed almost 74% initially loaded RG-Pu as compared to 60% for uranium based MOX. HEU based thorium fuels can be a very good option for replacing conventional uranium dioxide fuels as very small quantities of plutonium is produced. This option, although, has regulatory issues due to use of HEU material.  相似文献   

12.
This paper is aimed at the development of a fuel cycle concept for host countries with a lack of nuclear infrastructure. To minimize plutonium proliferation concern the adoption of long-life core with no fuel radiochemical treatment on site is suggested. Current investigation relies upon light water reactor technology and plutonium-free fresh fuel. Erbium doped to uranium oxide (enrichment 19.8%) fuel is selected as the reference. Such a high enrichment is selected in attempt to approach the longest irradiation time in one batch mode. In addition to that, uranium enriched up to 20% does not consider as a nuclear material for direct use in weapon manufacture. A sequence of two irradiation cycles for the same fuel rods in two different light water reactors is the key feature of the advocated approach. It is found that the synergism of PWR and pressure tube graphite reactor offers fuel burnup up to 140GWd/tHM without compromising safety characteristics. Being as large as 8% in the final isotopic vector, fraction of 238Pu serves as an inherent protective measure against plutonium proliferation.  相似文献   

13.
严重事故下为实现堆内熔融物滞留,可采用堆内捕集器(IVCC)的策略。捕集器属压力容器的一部分,属不可更换设备,需长期在堆内受中子辐照。本文通过对典型压水堆压力容器模型和带IVCC的压力容器模型的比较,发现IVCC不会改变压力容器内快中子通量,不会对压力容器的辐照造成影响。且IVCC使得压力容器的热中子通量明显减小,降低了压力容器的整体辐照水平。这说明IVCC对压力容器的辐照性能不会产生不利影响,反而有助于防止压力容器的老化。  相似文献   

14.
The mechanisms of oxidizing dissolution of spent MOX fuel (MIMAS TU2®) subjected to water radiolysis were investigated experimentally by leaching spent MOX47 fuel samples in pure water at 25 °C under different oxidizing conditions (with and without external gamma irradiation); the leached surfaces were characterized by Raman spectroscopy. The highly oxidizing conditions resulting from external gamma irradiation significantly increased the concentration of plutonium (Pu(V)) and uranium (U(VI)) compared with a benchmark experiment (without external irradiation). The oxidation behavior of the plutonium-enriched aggregates differed significantly from that of the UO2 matrix after several months of leaching in water under gamma irradiation. The plutonium in the aggregates appears to limit fuel oxidation. The only secondary phases formed and identified to date by Raman spectroscopy are uranium peroxides that generally precipitate on the surface of the UO2 grains. Concerning the behavior of plutonium, solution analysis results appear to be compatible with a conventional explanation based on an equilibrium with a Pu(OH)4(am) phase. The fission product release - considered as a general indicator of matrix alteration - from MOX47 fuel also increases under external gamma irradiation and a change in the leaching mode is observed. Diffusive leaching was clearly identified, coinciding with the rapid onset of steady-state actinide concentrations in the bulk solution.  相似文献   

15.
改进Flower型超临界水冷快堆初步增殖研究   总被引:2,自引:0,他引:2  
超临界水冷快堆集快堆和轻水堆两种特性。整个堆芯冷却剂流量仅为现BWR的1/8,中子能谱硬于普通PWR,故有一定的核燃料增殖能力。本文建立不同Flower型超临界水冷快堆堆芯物理模型,研究堆芯分区布置、冷却剂密度分层、seed及blanket组件P/D值设计、MOX燃料设计、燃料富集度分区分层布置、blanket内部通道采用贫铀冷却等方案,分析堆芯的空泡反应性、功率分布及增殖比。通过比较,得到了超临界水冷快堆的优化设计方案。  相似文献   

16.
与压水堆相比,球床式高温气冷堆能在堆芯结构不做明显改变的情况下采用全堆芯装载混合氧化物(MOX)燃料元件。基于250 MW球床模块式高温气冷堆堆芯结构,设计了4种球床式高温气冷堆下MOX燃料循环方式,包括铀钚混合的燃料球和独立的钚球与铀球混合装载的等效方式,采用高温气冷堆设计程序VSOP进行分析,比较了初装堆的有效增殖因数、燃料元件在堆芯内滞留时间、卸料燃耗、温度系数等主要物理特性。结果表明:采用纯铀和纯钚两种分离燃料球且铀燃料球循环时间更长的方案,平均卸料燃耗较高,总体性能较其他循环方式优越。  相似文献   

17.
《Annals of Nuclear Energy》2002,29(16):1919-1932
This study is aimed at the development of a fuel cycle concept for host countries with a lack of nuclear infrastructure. Two interrelated criteria, proliferation resistance and high-burnup, form the general framework of the fuel management scenario with the highest priority given to light water reactor technology and plutonium-free fresh fuel. Logically it implies the use of uranium oxide with enrichment close to 20%, whose effective utilization forms the main subject of the present paper. A sequence of two irradiation cycles for the same fuel pins in two different light water reactors is the key feature of the advocated approach. It is found that the synergism of PWR and pressure tube graphite reactor offers fuel burnup up to 140 GWd/tHM. Being as large as 8% in the final isotopic vector, the fraction of 238Pu serves as an inherent protective measure against plutonium proliferation.  相似文献   

18.
This paper evaluated the influence of neutron spectrum on characteristics of several equilibrium fuel cycles of pressurized water reactor (PWR). In this study, five kinds of fuel cycles were investigated. Required uranium enrichment, required natural uranium amount, and toxicity of heavy metals (HMs) in spent fuel were presented for comparison. The results showed that the enrichment and the required amount of natural uranium decrease significantly with increasing number of confined heavy nuclides when uranium is discharged from the reactor. On the other hand, when uranium is totally confined, the enrichment becomes extremely high. The confinement of plutonium and minor actinides (MA) seems effective in reducing radio-toxicity of discharged wastes. By confining all heavy nuclides except uranium those three characteristics could be reduced considerably. For this fuel cycle the toxicity of HMs in spent fuel become nearly equal to or less than that of loaded uranium.  相似文献   

19.
Americium is a key element to design the FBR based nuclear fuel cycle, because of its long-term high radiological toxicity as well as a resource of even-mass-number plutonium by its transmutation in reactors, which contributes the enhancement of proliferation resistance. The present paper summarizes analysis of the individual Am and U samples irradiation in Joyo to re-evaluate the results of Pu isotopes in the measure of proliferation resistance, and to combine the results for the prediction of DU-Am irradiation especially in the production of Pu isotopes. By the prediction of DU-Am oxide fuel in fast reactor environment with detail fuel irradiation analysis, it was confirmed that neutron moderation and fuel size affects the produced Pu isotope and its vector due to the very high sensitivity of 238U resonance capture reaction, the larger diameter fuel is more preferable in the case of moderated neutron spectrum environment for denaturing Pu in fast reactor blanket. Finally proliferation resistance of all the Pu produced in U, Am sample irradiation and DU-Am fuel irradiation prediction were evaluated based on decay heat and spontaneous fission neutron rate, and it was confirmed 241Am produces un-attractive Pu to abuse from the beginning to the end of irradiation, and more than 2% of 241Am doping is required to enhance the proliferation resistance of Pu to MOX grade and Kessler’s proposal in moderated neutron spectrum environment in fast reactor.  相似文献   

20.
Materials surveillance programs are required to detect and prevent degradation of safety-related structures and components of a nuclear power reactor. In this work, following the directions in the Regulatory Guide 1.190, a calculational methodology is implemented as additional support for a reactor pressure vessel and internals surveillance program for a BWR. The choice of the neutronic methods employed was based on the premise of being able of performing all the expected future survey calculations in relatively short times, but without compromising accuracy. First, a geometrical model of a typical BWR was developed, from the core to the primary containment, including jet pumps and all other structures. The methodology uses the Synthesis Method to compute the three-dimensional neutron flux distribution. In the methodology, the code CORE-MASTER-PRESTO is used as the three-dimensional core simulator; SCALE is used to generate the fine-group flux spectra of the components of the model and also used to generate a 47 energy-groups job cross section library, collapsed from the 199-fine-group master library VITAMIN-B6; ORIGEN2 was used to compute the isotopic densities of uranium and plutonium; and, finally, DORT was used to calculate the two-dimensional and one-dimensional neutron flux distributions required to compute the synthesized three-dimensional neutron flux. Then, the calculation of fast neutron fluence was performed using the effective full power time periods through six operational fuel cycles of two BWR Units and until the 13th cycle for Unit 1.The results showed a maximum relative difference between the calculated-by-synthesis fast neutron fluxes and fluences and those measured by Fe, Cu and Ni dosimeters less than 7%. The dosimeters were originally located adjacent to the pressure vessel wall, as part of the surveillance program. Results from the computations of peak fast fluence on pressure vessel wall and specific weld locations on the core shroud are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号