首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fire Safety Journal》1997,29(1):1-25
This paper presents a comparison of the results from a computational fluid dynamics (CFD) model and a two-zone model against a comprehensive set of data obtained from one flashover fire experiment. The experimental results were obtained from a full-scale prototype apartment building under flashover conditions. Three polyurethane mattresses were used as fuel. The CFAST two-zone model (version 2.0) was also used to predict results for this flashover fire test. The mass release rate, gas temperature, radiation heat flux and gas compositions (O2, CO2 and CO) were measured. A CFD program, CESARE-CFD Fire Model, has been developed and was used also to predict results for polyurethane-slab fire. A simple flame spread model was incorporated into the CFD program to predict the mass release rate and heat release rate during the fire instead of providing it as an input as is required for most zone and CFD models. It was found that the CFD model provided reasonable predictions of the magnitude and the trends for the temperatures in the burn room and the species concentrations, but over-predicted the temperatures in the adjacent enclosures. From a life safety perspective, the CFD model conservatively predicted the concentrations of CO and CO2. The predicted temperatures from the CFAST fire model agreed well with the experimental results in most areas. However, the CFAST model under predicted the temperature in the lower layer of the room of fire origin and the concentration of CO in most areas.  相似文献   

2.
Two models that can be used to predict full-scale heat release rates of polyurethane foam slabs were evaluated in this study. Predictions were compared with results of furniture calorimeter tests of 10 cm thick polyurethane foam specimens which were ignited in the centre or on the edge. Furniture calorimeter results indicated that peak heat release rates and fire growth rates were higher during centre ignition tests than edge ignition tests. For both situations, the growth phase of the heat release rate curves measured in the full-scale tests was successfully predicted using t 2 design fires; the choice of a specific t 2 fire depended on the surface area of the specimen and ignition location. A model originally developed during the European Combustion Behaviour of Upholstered Furniture (CBUF) project was also evaluated using heat release rate data from cone calorimeter tests and flame area burning rates measured using infrared video records of the furniture calorimeter tests. This model was able to successfully predict the initial growth phase of the fires and predictions of peak heat release rates were within 17% of measured values. The model had less success in predicting heat release rates later in the growth phase and during the decay phase of the fires, and did not appear to capture all of the physics of the full-scale tests, in particular foam melting and subsequent liquid pool burning. As the model did show promise, future work is planned to address these shortcomings and to develop improved flame spread models for polyurethane foam.  相似文献   

3.
A fire growth model was developed to predict the flame spread and total heat release rate of a fire in a corner configuration with a combustible lining. Input data for the combustible lining were developed using small-scale test data from the ASTM E1354 cone calorimeter and ASTM E1321 LIFT. The fire growth model includes a flame spread model linked with a two zone compartment fire model, CFAST Version 3.1.2. At a user selected time interval, the flame spread model uses the gas temperature from CFAST to predict the heat release rate of the fire at that time interval, and then provides CFAST with a new heat release rate to predict conditions during the next time step. The flame spread model is an improved version of the flat wall flame spread model previously developed for the US Navy. The model is capable of predicting flame spread in a variety of configurations including a flat wall, a corner with a ceiling, flat wall with a ceiling, unconfined ceiling, and parallel walls. The model has been validated against ISO 9705 test data and was used in this study to simulate conditions that develop in three open corner tests each with a different lining material. The model was able to predict the heat release rate of the fire and provide a reasonable estimate of the flame fronts and flame lengths during the growing fire.  相似文献   

4.
《Fire Safety Journal》2001,36(5):437-457
A theoretical and experimental study of rack storage fires is presented. Free-burn tests with multiple-wall corrugated paper cartons were carried out in reduced scale and in large scale. The in-rack flame height, excess centreline gas temperature and gas velocity were plotted using axi-symmetric quasi-steady state power law correlations. The correlations include overall convective heat release rate, vertical flue width, height above the floor and height of virtual origin. The correlations obtained can be used to predict activation times of in-rack sprinklers and they can be incorporated into engineering models designed to predict flame spread and fire growth in storage geometries. The study shows that it is possible to reproduce flow conditions and flame heights in different scales which is of practical importance since all large scale testing with high rack storages is very expensive.  相似文献   

5.
Rapid urban sprawl and population decentralization in recent decades have increased the size of the wildland-urban interface and resulted in higher community risk and vulnerability to wildfire. This paper primarily focuses on understanding grass-fueled fires common to Texas and improving the understanding of the physics and fire dynamics that are inherent in the grassland and prairie flame spread problem. Little bluestem (Schizachyrium scoparium) grass was chosen as the grassland fuel due to its prevalent coverage in the Texas area and its relevance to grassland fires in Texas. The methodology in this study relies on a framework to characterize fuel properties of little bluestem grass using small- and intermediate-scale experiments to better predict full-scale fire behavior. An intermediate-scale numerical flame spread model was developed for grass fuels that accounts for fuel moisture content to calculate the mass versus time of a burning little bluestem plant. The results of the small- and intermediate-scale experiments were used to develop input parameters for a field-scale numerical simulation of a grass field using a physics-based computational fire model, Wildland-urban interface Fire Dynamics Simulator (WFDS). A sensitivity analysis was performed to determine the effect of varying WFDS input parameters on the fire spread rate. The results indicate that the fuel moisture content had the most significant impact on the fire spread rate.  相似文献   

6.
For properly describing practical building fire processes with solid combustibles, the pyrolysis kinetics model of solid combustibles and the large eddy simulation (LES) approach are applied to the simulation of the thermal decomposition of the polyurethane foam (PUF) slab and the space fire spread in a compartment. The instantaneous variations of the heat release rate of the PUF slab, the smoke temperature, and the smoke interface height with time are obtained under different ventilation conditions. They are in agreement with the measured data. The ventilation conditions have distinct effects on the interactions between the pyrolysis of the PUF slab and the space fire spread. Influenced by the space fire spread, the heat flux on the top plane of the PUF slab exhibits a non-uniform distribution. The PUF slab is consumed in an asymmetric manner.  相似文献   

7.
开发了CFD模型,用来预测细水雾中火焰沿固体燃料蔓延的特性。采用气体和固体燃料作为对比试验,利用不稳定两维保守公式描述自持性火焰蔓延情况。因为的分析重点主要放在火焰前锋火焰的熄灭机理(火焰前锋完全暴露在细水雾中),所以考虑了有限率(finite—rate)化学反应。火焰基本传播数据也可虑了用于细水雾和蒸气质量的公式,这包括水蒸发造成的能量消耗。还对在细水雾喷洒下聚合材料做成的厚燃料床上火焰的水平传播进行了试验。结果显示,火焰热释放区内自持性能量守恒对外部能量消耗非常敏感。在本试验中,主要是水滴蒸发造成的能量消耗。因此,在火焰前锋,火焰在细水雾的喷洒下挣扎着,要么按几乎相同的速度(没有水喷雾情况下)继续传播,要么被完全熄灭。本文还研究了水滴直径大于30μm细水雾的灭火特性。本文获得了在不同条件下火焰蔓延情况下,灭火需要的细水雾质量分率的关键浓度。  相似文献   

8.
This paper presents a model to evaluate the thermal energy transfer between a localized fire and the surfaces exposed to it, without the flame impinging the ceiling of the semi-open compartment. Although this type of fire may not have significant consequences for the structure as a whole, it is capable of triggering other disasters such as explosions and larger fires, which is why its study becomes increasingly important. Currently, this accident is analyzed using either sophisticated or semi-empirical numerical models available in the literature. The former uses computational fluid dynamics (CFD), which acceptably reproduces the fire, although with high computational cost. In turn, the semi-empirical models generally present conservative results. The proposed model presents variants in classic simple models available in the literature with the aim of being a tool that allows designers to estimate the thermal fields resulting from this type of fires at the preliminary structure design stage. In this model, the thermal analysis is performed using a finite element program, considering relevant parameters that characterize the fire such as: heat release rate, location and equivalent diameter of the fire source, among others. Through subroutines, the finite element model considers (a) a modification of hot gases temperature field based in a classic simple model and (b) proposition of a new geometry of the flame. The estimated radiative heat flux employs a solid ellipsoidal flame whose height changes according to the heat release rate. The convective heat flux is evaluated using a model for localized fire. Efficiency and accuracy of the methodology are checked by comparing the simulation results with those obtained by sophisticated models developed in fire dynamic simulator (FDS). The cases studied consider: (a) the replication of the experimental test conducted at Luleå University and (b) an offshore platform deck under localized fire action. The results of the first case confirm that the FDS replicates the experimental measurements with high accuracy. Finally, the results show that the proposed model allows to realistically represent the temperature fields generated by the fire, with relatively low computational cost compared to the CFD models for cases (a) and (b), therefore it is possible to use it to develop preliminary analyses in other fire scenarios.  相似文献   

9.
山火条件下高压输电线路放电特性   总被引:1,自引:0,他引:1  
利用单、双和三木垛火源和单股、双分裂和四分裂模拟高压导线研究了中尺度高压输电线路在火灾条件下的放电特性及其与火源火场参数的关系,提出了为防控火灾实际输电线路走廊内森林可燃物管理方法.结果发现,模拟导线在火焰中较纯空气中容易发生放电(火焰中空气平均击穿场强较纯空气中约下降64.9%);火持续时间、火焰高度和火灾荷载密度对平均击穿场强的影响程度依次减弱,火强度则是决定性影响参数(木垛火源双木垛火变为三木垛火时,空气平均击穿场强与火强度、火灾荷载密度、火持续时间及火焰高度增幅比分别为2.11、0.482、1.70和0.582);中高速中高强度的上山地表火、树冠火、冲冠火和地表火转化的树冠火易形成高火焰、高热量、高温度、高浓度(烟尘粒子和带电质点)的容易使线路跳闸的环境条件.  相似文献   

10.
《Fire Safety Journal》2005,40(3):213-244
In ventilated tunnel fires, smoke and hot combustion products may form a layer near the ceiling and flow in the direction opposite to the ventilation stream. The existence of this reverse stratified flow has an important bearing on fire fighting and evacuation of underground mine roadways, tunnels and building corridors. In the present study, conducted by the National Institute for Occupational Safety and Health, a CFD program (fire dynamics simulator) based on large eddy simulations (LES) is used to model floor-level fires in a ventilated tunnel. Specifically, the critical ventilation velocity that is just sufficient to prevent the formation of a reverse stratified layer is simulated for two tunnels of different size. The computer code is verified by checking the computed velocity profile against experimental measurements. The CFD results show the leveling-off of the critical ventilation velocity as the heat release rate surpasses a certain value. At this critical ventilation, the ceiling temperature above the fire reaches a maximum for both tunnels. The velocity leveling-off can be explained from this observation. An extended correlation of Newman (Combust. Flame 57 (1984) 33) is applied to the temperature profiles obtained by CFD. At the critical ventilation, temperature stratification exists downstream from the fire. The computed critical ventilation velocity shows fair agreement with available experimental data taken from both horizontal and inclined fire tunnels. The CFD simulations indicate that the Froude modeling is an approximation for tunnel fires. The Froude-scaling law does not apply to two geometrically similar fire tunnels. The CFD results are compared with two simple theories of critical ventilation by Kennedy et al. (ASHRAE Trans. Res. 102(2) (1996) 40) and Kunsch (Fire safety J. 37 (2002) 67).  相似文献   

11.
Viitanen  Alexandra  Hostikka  Simo  Vaari  Jukka 《Fire Technology》2022,58(5):3039-3065

In this paper, a pyrolysis model for a PVC cable is constructed using results from thermogravimetric analysis, microscale combustion calorimeter and cone calorimeter experiments. The pyrolysis model is used to simulate fire propagation in horizontal cable trays. The simulated arrangement corresponds to a cable tray fire experiment from OECD PRISME 2 project. As laying the cables loosely along the horizontal trays is a random process, a novel stochastic method is developed for making the simplified cable tray geometries for the computational fluid dynamics model. In addition, as the simplified cable tray geometry has significantly smaller surface area than a real tray full of cables, the surface area was parametrically adjusted. In contrast to most of the earlier published numerical approaches for simulating cable tray fires, the presented approach does not use empirical correlations for predicting fire propagation and does not require any results from full-scale experiments for calibrating the model. The simulation results are compared to experimental results in terms of heat release rate, mass loss, tray ignition times and lateral flame spread rates. The maximum heat release rate was overpredicted by 8% on average.

  相似文献   

12.
《Fire Safety Journal》1998,31(3):201-225
A significant contributing factor to wildland fire development is the slope effect which causes the fire spread rate to increase considerably as compared to horizontal spread. This leads to difficulties in determining the development of the fires hence in coordinating forest fighting efforts. In the present study, a two-dimensional non-stationary model for a fire spreading across a sloping fuel bed made up of Pinus pinaster litter is described. Based on a series of hypotheses, we first defined a medium equivalent to the pine needle litter for which we provided a thermal balance. By coupling this balance to a diffusion flame model we obtained the fire spread model numerically solved by means of the SIMPLEC procedure. The fire spread rates given by the simulations were then compared to experimental results generated by small-scale laboratory fires for a range of slope values. Predicted flow field structure, and temperature field are also discussed.  相似文献   

13.
In warehouse storage applications, it is important to classify the burning behavior of commodities and rank them according to their material flammability for early fire detection and suppression operations. In this study, a preliminary approach towards commodity classification is presented that models the early stage of large-scale warehouse fires by decoupling the problem into separate processes of heat and mass transfer. Two existing nondimensional parameters are used to represent the physical phenomena at the large-scale: a mass transfer number that directly incorporates the material properties of a fuel, and the soot yield of the fuel that controls the radiation observed in the large-scale. To facilitate modeling, a mass transfer number (or B-number) was experimentally obtained using mass-loss (burning rate) measurements from bench-scale tests, following from a procedure that was developed in Part I of this paper.Two fuels are considered: corrugated cardboard and polystyrene. Corrugated cardboard provides a source of flaming combustion in a warehouse and is usually the first item to ignite and sustain flame spread. Polystyrene is typically used as the most hazardous product in large-scale fire testing. The nondimensional mass transfer number was then used to model in-rack flame heights on 6.1-9.1 m (20-30 ft) stacks of ‘C’ flute corrugated cardboard boxes on rack-storage during the initial period of flame spread (involving flame spread over the corrugated cardboard face only). Good agreement was observed between the model and large-scale experiments during the initial stages of fire growth, and a comparison to previous correlations for in-rack flame heights is included.  相似文献   

14.
《Fire Safety Journal》2001,36(6):519-543
In a previous study, a two-dimensional non-stationary model of fire spread across a fuel bed including slope effects was proposed. Enhancement of the radiant heat transfer process ahead of the fire front under wind and slope conditions is provided in the current paper. Predictions are compared to data recorded during laboratory-scale experimental fires conducted across different pine needles bed under wind and slope conditions. Influence of these environmental factors on rate of spread, temperature–time profiles and fire front shapes is then presented. Predictions reveal that effects of flame radiation alone can account for observations up to limit value of slope angle and wind velocity for which convective mechanisms cannot be neglected. Below this limit observations are quantitatively well reproduced by the model.  相似文献   

15.
A CFD model of the 4th Beijing subway line was used to study the effect of longitudinal ventilation on heat and smoke plume movement in the tunnel. The critical ventilation velocity is correlated with the heat release rate for both a simplified heat fire source model and a complete combustion fire source model with methane gas as fuel. The influences of the heat source length and the fuel gas inlet geometry on the critical velocity are investigated for both fire source models. The results show that the influences of the combustion process and fire source area variation are not included in models based on Froude number preservation theory. Thus, Ri is no longer suitable as a dimensionless number for the critical ventilation velocity when the fire geometry or combustion conditions influence the results. The back-layering air temperature above the front of the fire source can be used to explain the different critical velocity variation regimes for all the simulation conditions.  相似文献   

16.
Quantification of heat release rate is crucial to many fire research works. Under certain conditions, such as very large fires and fire tests with sprinklers, measurements of fire heat release rate can be a challenging problem. This study attempted to develop a methodology of estimating chemical heat release rate using flame volume. This method is based on the theory that heat release rate per unit flame volume is relatively invariant, as long as the combustion is controlled by diffusion in buoyant fires under well-ventilated conditions. Test data were examined from a variety of fire experimental conditions to evaluate the proposed method. The results demonstrate that the flame-volume based method can provide reasonable estimation of heat release rate compared to oxygen-consumption based method.  相似文献   

17.
《Fire Safety Journal》1999,33(3):185-212
The focus of this paper is on numerical modeling of methanol liquid pool fires and the suppression of these fires using water mist. A mathematical model is first developed to describe the evaporation and burning of liquid methanol. The complete set of unsteady, compressible Navier–Stokes equations are solved along with an Eulerian sectional water mist model. Heat transfer into the liquid pool and the metal container through conduction, convection and radiation are modeled by solving a modified form of the energy equation. Clausius–Clapeyron relationships are invoked to model the evaporation rate of a two-dimensional pool of pure liquid methanol.The interaction of water mist with pulsating fires stabilized above a liquid methanol pool and steady fires stabilized by a strong co-flowing air jet are simulated. Time-dependent heat release/absorption profiles indicate the location where the water droplets evaporate and absorb energy. The relative contribution of the various suppression mechanisms such as oxygen dilution, radiation and thermal cooling is investigated. Parametric studies are performed to determine the effect of mist density, injection velocity and droplet diameter on entrainment and suppression of pool fires. These results are reported in terms of reduction in peak temperature, effect on burning rate and changes in overall heat release rate. Numerical simulations indicate that small droplet diameters exhibit smaller characteristic time for decrease of relative velocity with respect to the gas phase, and therefore entrain more rapidly into the diffusion flame than larger droplet. Hence for the co-flow injection case, smaller diameter droplets produce maximum flame suppression for a fixed amount of water mist.  相似文献   

18.
The “critical velocity” is the minimum air velocity required to suppress the smoke spreading against the longitudinal ventilation flow during tunnel fire situations. The current techniques for prediction of the values of the critical velocity for various tunnels were mainly based on semi-empirical equations obtained from the Froude number preservation combining with some experimental data. There are a few uncertainties in the current methods of prediction of the critical ventilation velocity. The first is the influence of the fire power on the critical ventilation velocity. The second is the effect of the tunnel geometry on the critical velocity. Both problems lead to the issues of the scaling techniques in tunnel fires. This study addressed these problems by carrying out a series of experimental tests in five model tunnels having the same height but different cross-sectional geometry. Detailed temperature and velocity distributions in the tunnels have been carried out. The experimental results showed that the critical velocity did vary with the tunnel cross-sectional geometry. It was also shown clearly that there are two regimes of variation of critical velocity against fire heat release rate. At low rates of heat release the critical velocity varies as the one-third power of the heat release rate, however at higher rates of heat release, the critical velocity becomes independent of fire heat release rate. Analysis of the distribution of temperature within the fire plumes showed that there were two fire plume distributions at the critical ventilation conditions. The change of the fire plume distribution coincided with the change of the regime in the curves of the critical velocity against fire heat release rate. The study used dimensionless velocity and dimensionless heat release rate with the tunnel hydraulic height (tunnel mean hydraulic diameter) as the characteristic length in the experimental data analysis. It was shown that the experimental data for the five tunnels can be correlated into simple formulae which can be used for scaling. The new scaling techniques are examined by applying the scaling techniques to the present experimental results and three large-scale experimental results available in the public literature. A good agreement has been obtained. This suggests that the scaling techniques can be used with confidence to predict the critical ventilation velocity for larger-scale tunnels in any cross-sectional geometry. Comprehensive CFD simulations have been carried out to examine the flow behaviour inside the tunnels. Validation against the experimental results showed that the CFD gave slightly lower but satisfactory prediction of the flow velocity. However the temperature prediction in the fire region was too high. The findings from the CFD simulations supported the ones from experimental tests.  相似文献   

19.
集中排烟水平隧道排风诱导风速CFD分析   总被引:8,自引:1,他引:7  
结合某长大公路隧道集中排烟系统设计,通过CFD模拟,分析不同排风诱导风速下水平隧道内烟气控制效果.模拟结果表明:火灾热释放速率一定时,随着诱导风速的增大,排风口下游烟气扩散范围不断缩小,即诱导风速可以作为衡量集中排烟系统烟气控制效果的重要指标;此外,与临界风速相似,其数值随着火灾强度的增大的而增大;为了便于工程应用,进一步将模拟结果回归整理成无量纲准则关联式,充分反映了三者之间的耦合关系.在数值模拟的基础上,作者对隧道排烟系统进行了优化设计,并与纵向通风临界风速进行了比较.  相似文献   

20.
《Fire Safety Journal》2006,41(6):420-426
The objective is to carry out experiments on scale models and CFD calculations in order to study the influence of tunnel width W on critical velocity (for a given tunnel height H). By definition, the critical velocity is the minimum longitudinal velocity needed to prevent smoke back flow when a fire occurs in a tunnel. Two different experimental reduced scale models are used: the first one is a thermal model using a propane gas flame to simulate the fire and the second one is a densimetrical model in which the fire-induced- smoke is represented by a continuous release of an isothermal buoyant mixing. In both approaches, for aspect ratios W/H greater than unity, it is noticed that the critical velocity decreases when the width increases, as predicted by theory, but for low values of the aspect ratio (i.e. when W<H) and for high enough fire heat release rates, the critical velocity significantly increases with tunnel width. This can be associated to a change in the transverse flow pattern close to the buoyant source. Complementary CFD calculations are also presented in order to describe the influence of the lateral confinement on smoke plume spreading and then, on critical velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号