首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
在Gleeble-3500热力模拟试验机上对25Cr3Mo3NiNbZr进行热压缩试验,研究其在温度800~1250℃和应变速率为0. 01 s~(-1)~20 s~(-1)条件下的热变形行为。结果表明:流变应力随变形温度升高而降低,随应变速率提高而增大。根据材料动态模型,计算并分析了合金的热加工图,利用热加工图确定了热变形的流变失稳区,合金在热加工温度为1050~1150℃,应变速率为0. 01 s~(-1)时可加工性最优。  相似文献   

2.
在Gleeble-3800热模拟机上采用等温压缩实验研究了5182铝合金在变形温度为573 K~723 K、应变速率为0. 01 s-1~10 s~(-1)、真应变为0~0. 69条件下的高温流变应力行为,建立了5182铝合金热变形的本构方程和热加工图。结果表明:5182铝合金在热变形时,其流变应力呈现出稳态流变特征,随变形温度的升高而降低,随应变速率的增加而增大,但在应变速率ε·≥1 s~(-1)高应变速率下,则出现动态软化现象;可以采用包含Z参数的双曲正弦函数关系来描述5182铝合金高温变形时的流变应力行为;最佳的热变形区域为变形温度400℃~420℃、应变速率0. 01 s~(-1)~0. 1 s~(-1)。  相似文献   

3.
采用真空非自耗熔炼炉制备了低成本Ti-6Al-2.5V-1.5Fe-0.15O合金。利用Gleeble-1500D热模拟机,研究了其热加工参数为:变形温度875~1100℃、应变速率0.001~1 s~(-1),变形量为70%时的热变形行为。建立了Ti-6Al-2.5V-1.5Fe-0.15O合金考虑应变量的Arrhenius本构方程,基于动态材料模型建立热加工图。结果表明:变形温度升高,应变速率降低,流变应力降低。通过本构方程计算可得两相区平均热激活能为398.824 kJ/mol,远大于纯钛自激活能,表明热变形软化机制与动态再结晶有关。单相区热激活能为210.93 kJ/mol,略大于纯钛自激活能,以动态回复为主。通过热加工图确定2个失稳区,中等变形温度(950~1070℃)、高应变速率(0.31~0.1 s~(-1))易发生绝热剪切。结合热加工图确定适合的加工区间:应变速率为0.001~0.01 s~(-1),变形温度为875~925℃。  相似文献   

4.
利用Gleeble-1500D热模拟试验机对35%SiCp/Al复合材料进行压缩试验,研究其在温度为350~500℃、应变速率为0.01~10 s~(-1)条件下的高温塑性变形行为。由试验得出的变形过程中的应力-应变曲线,建立了功率耗散效率图和热加工图,确定了热加工的稳定区和失稳区,观察分析了加工图中不同区域的显微组织。结果表明:35%SiCp/Al复合材料的流变应力随变形温度的降低或应变速率的升高而增加,应力-应变曲线变化主要以动态再结晶为特征。最适合热变形加工的条件是变形温度为370~420℃、应变速率为0.15~1 s~(-1)的区域,加工安全区微观组织明显改善,并出现再结晶晶粒。  相似文献   

5.
采用Gleeble-1500D数控动态-力学模拟试验机,对Cu-0. 8Cr-0. 3Zr-0. 2Mg合金在550~900℃温度范围和0. 001~10 s~(-1)应变速率条件下进行了热变形试验,绘制了其真应力-真应变曲线,利用光学显微镜分析了其在热变形过程中的组织演变。绘制了合金的热加工图,找出热变形过程中最适宜的热加工参数。结果表明:合金的流变应力随温度的降低和应变速率的提高而增大;在热变形过程中,合金组织的演变对温度和应变速率有很高的敏感性,高温低应变速率有利于促进动态再结晶的发生;Cu-0. 8Cr-0. 3Zr-0. 2Mg合金适宜的热加工参数范围为:变形温度为850~900℃,应变速率为0. 01~0. 07 s~(-1)。  相似文献   

6.
孔得磊  雷丽萍  曾攀 《锻压技术》2019,44(3):122-132
为研究40Mn钢的热变形行为和动态再结晶特征,在Gleeble-1500D热模拟机上对40Mn钢进行了等温压缩实验,建立了高温流变应力模型和加工图,并采用光学显微镜观察压缩后试样的显微组织。结果表明:40Mn钢高温流变应力可采用包含动态再结晶特征的双曲正弦模型来描述。实验条件下获得的热变形平均变形激活能为300. 48 k J·mol~(-1)。40Mn钢具有动态再结晶软化特征,不同应变下加工图有明显区别。将其加工图分为加工硬化-动态回复阶段和动态再结晶阶段。在加工硬化-动态回复阶段,存在两个加工失稳区,分别位于900℃-1 s~(-1)和1200℃-1 s~(-1)附近,机理分别为绝热剪切带和晶界开裂;在动态再结晶阶段,存在一个加工失稳区,位于低温高应变速率区域,机理为绝热剪切带,存在一个最佳加工区域为温度1050~1150℃,应变速率0. 003~0. 01 s~(-1),其为动态再结晶区域。在850℃-1 s~(-1)条件下,金相图中观察到"项链"组织,验证了加工图的可靠性,可为热加工性能评估和锻造工艺研究提供指导。  相似文献   

7.
马雪飞  姜君  李红雷 《锻压技术》2019,44(1):166-171
采用Gleeble-1500D热模拟试验机对Cr8钢进行了高温压缩试验,研究了Cr8钢在变形温度为900~1200℃、应变速率为0. 005~5 s~(-1)条件下的热变形行为。基于试验得到Cr8钢的真应力-真应变曲线,采用动态材料模型和Ziegler失稳判据建立了Cr8钢的热加工图。结果表明:当应变速率小于1 s~(-1)时,该合金的热变形流变曲线呈现出典型的动态回复型特征;材料的失稳区主要发生在高应变速率的区域,并且随着应变的增加,功率耗散因子增加。根据已建立的热加工图,得到了Cr8钢的最佳加工工艺参数为变形温度1125~1190℃、应变速率0. 005~0. 01 s~(-1)。分析加工图中非失稳区的金相照片,该材料的显微组织发生了动态再结晶,获得的组织晶粒细小且分布均匀;分析加工图中失稳区的金相照片,该材料的显微组织中出现了很多剪切带,验证了该热加工图的正确性。  相似文献   

8.
《塑性工程学报》2020,(2):114-127
利用Gleeble-3800热模拟试验机,在变形温度为1050~1200℃,应变速率为0. 1~10 s-1,变形量为20%、40%和60%的条件下,对00Cr40Ni55Al3Ti无磁合金进行热压缩变形实验,研究了变形量、应变速率和变形温度等变形工艺参数对00Cr40Ni55Al3Ti无磁合金组织演变及流变应力的影响规律,建立了00Cr40Ni55Al3Ti无磁合金热变形的本构方程和热加工图。结果表明:00Cr40Ni55Al3Ti无磁合金的临界变形量为10. 8%,变形量大于此临界值时,合金中的奥氏体发生动态再结晶和球状α-Cr相形核长大;应变速率为0. 1 s~(-1)时,合金发生不连续动态再结晶,应变速率为5 s-1时,晶界处球状α-Cr相形核长大引起变形不协调,在峰值应力后出现软化波动现象;合金变形量为60%时的热变形激活能为397. 077 k J·mol~(-1)。根据热加工图确定适宜的热加工区域为:变形温度为1080~1100℃、应变速率为0. 1~0. 35 s~(-1)和变形温度为1120~1190℃、应变速率为4. 5~10 s~(-1),合金在该区域进行锻造可获得质量良好的锻件。  相似文献   

9.
通过热模拟压缩试验研究了燃料包壳用FeCrAl合金在形变温度为800~1000℃、应变速率为0.001~1s~(-1)工艺条件下的热变形行为,采用Arrhenius双曲线正弦函数模型建立了FeCrAl高温变形本构方程,结合动态材料模型绘制了FeCrAl在应变量为0.05~0.8的热加工图。结果显示,FeCrAl流变应力随着变形温度的升高而降低、随着应变速率的升高而增大,变形温度与应变速率均会影响其组织演化。根据热加工图,FeCrAl流变失稳区随着应变量的增加先扩展后趋于稳定,其最佳热加工工艺参数确定为:应变量ε=0.1时,应变速率e0.008 s~(-1)、变形温度为880~1000℃;应变量ε≥0.3时,应变速率e0.027 s~(-1)、变形温度950℃。  相似文献   

10.
采用Gleeble-3500热模拟试验机研究了100Cr6轴承钢在变形温度为850~1150℃、应变速率为0.01~10 s~(-1)条件下的热变形行为。分析了应变速率和变形温度对流变应力的影响,建立了100Cr6轴承钢热变形时的本构方程和热加工图,并讨论了组织变化情况。结果表明,在相同的应变速率下,流变应力随着温度的升高而降低;而在相同的变形温度下,流变应力随着应变速率的升高而增大。当应变速率为0.1 s~(-1)时,在850℃和950℃压缩变形时,发生了动态回复软化;而在1050℃和1150℃热压缩变形时,加工硬化的软化机理为动态再结晶。结合显微组织观察,得到变形温度950~1150℃、应变速率0.01~0.1 s~(-1)为100Cr6钢的合理热加工工艺参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号