首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amorphous/nanocrystalline coatings are useful in high strength and wear-resistant applications. In the present study, the microstructural evolution of a nanocrystalline high performance steel coatings developed by different spray processes along with a novel “hybrid thermal spray” technique was studied. The hybrid-spray process combines arc and high-velocity oxy-fuel (HVOF) techniques, in which the molten metal at the arcing tip is atomized and rapidly propelled toward the substrate by HVOF jet. This so-called hybrid concept offers the benefits of productivity of electric arc spray combined with improved coating densities of HVOF. The microstructural characterization of the hybrid-spray coatings was performed by x-ray diffraction, electron microscopy, and differential scanning calorimetry, and then compared with coatings of the similar material developed by plasma-, HVOF-, and arc-spray processes individually. The HVOF- and plasma-spray coatings showed amorphous structures with very fine nanocrystals embedded, whereas hybrid- and arc-spray techniques yielded completely crystalline coatings with grain size in the range of several nanometers. The final microstructures in different spray processes could be attributed to the precursor materials employed, process temperatures, and cooling rates during the deposition process.  相似文献   

2.
High-velocity oxygen fuel (HVOF) thermal spray processes are used in applications requiring the highest density and adhesion strength, which are not achievable in most other thermal spray processes. Similar to other thermal spray processes, however, a normal HVOF process is unable to apply fine powders less than 10 μm via a powder feeder. The advantages of using smaller and even nanosized particles in a HVOF process include uniform microstructure, higher cohesion and adhesion, full density, lower internal stress, and higher deposition efficiency. In this work, a new process has been developed for HVOF forming of fine-grained Inconel 625 alloy layers using a liquid feedstock containing small alloy particles. Process investigations have shown the benefits of making single and duplex layered coatings with full density and high bond strength, which are attributed to the very high kinetic energy of particles striking on the substrates and the better melting of the small particles. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

3.
Thermal spray processes such as plasma spraying and HVOF have gained markets due to a steady process of development of materials and equipment. One disadvantage of thermal spray processes is that costs must be competitive compared to techniques such as PTA and electroplating. In order to reduce costs, the more economical spray processes like conventional wire flame spraying, as well as arc spraying, are becoming more popular. There are modern arc spray gun designs on the market that meet the requirements of modern coating properties, for example aviation overhaul applications as well as the processing of cored wires. Nevertheless, the physical basis of arc spraying is well known. The aim of the present investigation is to show how the influence of spray velocity (not particle velocity) affects coating structure with respect to arc spray parameters.  相似文献   

4.
New attachment for controlling gas flow in the HVOF process   总被引:1,自引:0,他引:1  
During the decade, the high-velocity oxyfuel (HVOF) process proved to be a technological alternative to the many conventional thermal spray processes. It would be very advantageous to design a nozzle that provides improved performance in the areas of deposition efficiency, particle in-flight oxidation, and flexibility to allow deposition of ceramic coatings. Based on a numerical analysis, a new attachment to a standard HVOF torch was modeled, designed, tested, and used to produce thermal spray coatings according to the industrial needs mentioned above. Performance of the attachment was investigated by spraying several coating materials including metal and ceramic powders. Particle conditions and spatial distribution, as well as gas phase composition, corresponding to the new attachment and the standard HVOF gun, were compared. The attachment provides better particle spatial distribution, combined with higher particle velocity and temperature. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), 5–8 May, 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   

5.
To achieve solid oxide fuel cells (SOFC) at reduced costs, the atmospheric plasma spray (APS) process could be an attractive technique. However, to make dense and thin layers as needed for electrolytes, a suspension is preferably implemented as a feedstock material instead of a conventional powder. Suspensions of yttria-stabilized zirconia particles in methanol have been prepared with various solid loadings and states of dispersion. An external injection system was used to ensure the atomization and radial injection of the suspension into the Ar-H2 plasma under atmospheric conditions. The coatings morphologies were characterized by scanning electron microscopy, and their porosity was evaluated by the Archimedes method. Differences in the microstructure of the deposits were observed depending on the APS operating conditions. Special attention has been dedicated to assess the influence of the suspension as well as the injection on the layer morphology. For this purpose, the atomization has been investigated and efforts have been made to understand relationships among suspension properties, atomization, and coating microstructure. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

6.
The subject of this paper is the assessment of the thermal and mechanical properties of Invar steel coatings, deposited using electric arc spraying, and the correlation of these properties to the spray parameters and processes used to offer coatings with characteristics appropriate to the requirements of tools used in the fabrication of precision polymer matrix composite work pieces. In particular, two processing methods, inert and air atomization, and three arc spray gun configurations (air cap design) were evaluated. The low coefficient of thermal expansion (CTE) properties of Invar are maintained in the spray-deposited coatings using both high velocity oxy-fuel (HVOF) and air-atomized arc spraying, although HVOF coatings have significantly lower CTE and greater durability than those deposited by arc spraying. The mechanical properties of the coatings are low compared to bulk Invar, regardless of the spray parameters and hardware used. Inert arc spraying affords more consistent coating characteristics but this comes with a compromised durability. The spray hardware was found to be more significant in determining the coating properties than the parameters employed.  相似文献   

7.
The application of thick high-velocity oxyfuel (HVOF) coatings on metallic parts has been widely accepted as a solution to improve their wear properties. The adherence of these coatings to the substrate is strongly influenced by the residual stresses generated during the coating deposition process. In an HVOF spraying process, due to the relatively low processing temperature, significant peening stresses are generated during impact of molten and semimolten particles on the substrate. At present, finite-element (FE) models of residual stress generation for the HVOF process are not available due to the increased complexities in modeling the stresses generated due to the particle impact. In this work, an explicit FE analysis is carried out to study the effect of molten particle impingement using deposition of an HVOF sprayed copper coating on a copper substrate as an example system. The results from the analysis are subsequently used in a thermomechanical FE model to allow the development of the residual stresses in these coatings to be modeled. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

8.
The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.  相似文献   

9.
Nanostructured titania (TiO2) coatings were produced by high-velocity oxyfuel (HVOF) spraying. They were engineered as a possible candidate to replace hydroxyapatite (HA) coatings produced by thermal spray on implants. The HVOF sprayed nanostructured titania coatings exhibited mechanical properties, such as hardness and bond strength, much superior to those of HA thermal spray coatings. In addition to these characteristics, the surface of the nanostructured coatings exhibited regions with nanotextured features originating from the semimolten nanostructured feedstock particles. It is hypothesized that these regions may enhance osteoblast adhesion on the coating by creating a better interaction with adhesion proteins, such as fibronectin, which exhibit dimensions in the order of nanometers. Preliminary osteoblast cell culture demonstrated that this type of HVOF sprayed nanostructured titania coating supported osteoblast cell growth and did not negatively affect cell viability. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

10.
Use of a comprehensive validated computer model of a thermal spray process enables an ability to improve, optimize, and fine-tune the performance of that thermal spray process. A validated model of the Sulzer Metco TriplexPro™ 200 plasma gun has been used to improve the performance of the actual gun in terms of enhancing gas flow dynamics, thermal management, and overall performance in terms of a robust design. Internal changes to the gun geometry using the model have extended the life of the hardware. In addition the model has permitted the investigation of the fundamental operation of the gun, specific to the behavior and path of the arcs, as well as the ability to operate the plasma gun, under simulation, in operating regimes that currently cannot be supported by the physical hardware. The model has been run at gas pressures above 1.4 Mpa and/or voltages above 300 V that currently cannot be obtained with the physical hardware due to equipment limitations to evaluate the potential to extend the operating window of the Sulzer Metco TriplexPro™ 200 gun beyond current levels in terms of particle velocity and temperature. The end result is an improved process tool for applying thermal spray coatings ranging from ceramics applied at high particle temperature and low particle velocities to carbides and alloys applied at lower temperatures and higher velocities. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

11.
Relationships between process inputs and coating properties were characterized using a twin-wire arc torch spraying zinc. Specifically, standoff distance, primary and secondary atomizing gas pressures, and arc current were varied in order to determine their effects on deposition efficiency, surface roughness, coating porosity, and spray particle size. Process associations were investigated using an analysis of variance with a design of experiments approach with the intent of determining which spray parameters affect each of the aforementioned coating properties. The associations found are consistent with other studies of the twin-wire arc spray process and provide a framework for selecting process operating conditions based on desired coating properties. Such a specific outline has not been previously available.  相似文献   

12.
Mathematical models for simulation of motion and heating of fine ceramic particles in plasma and laser spraying, as well as under conditions of a new technological process, that is, hybrid laser plasma spraying, are proposed. Trajectories, velocities, and temperature fields of fine SiO2 particles being sprayed using the argon plasma jet, CO2 laser beam, and their combination have been calculated. It is shown that the space-time distribution of temperature in spray particles greatly depends on the spraying method. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

13.
异质双丝电弧喷涂制备复合涂层的工艺优化   总被引:2,自引:2,他引:0       下载免费PDF全文
异质双丝电弧喷涂是利用两根不同材质金属丝制备复合涂层的一种工艺. 对于熔点相差较大的丝材组合,常出现高熔点材料熔化不完全、频繁断弧的现象. 为此文中提出了异步送丝的电弧喷涂方法,并对碳钢丝—铝丝双丝组合喷涂的电弧区行为展开了研究. 结果表明,异步送丝的电弧喷涂设备可有效解决熔点差别较大的异质双丝电弧喷涂时的稳定性问题. 最后使用扫描电镜和X射线衍射仪对Fe-Al复合涂层的组织进行表征,表明异质双丝电弧喷涂过程中阴阳两极材料间基本不发生冶金反应,形成的是一种铝软质颗粒和碳钢硬质颗粒交错叠加的机械混合涂层.  相似文献   

14.
The velocity of cold spray particles was measured by a diagnostic system designed for thermal spray particles that is based on thermal radiation. A laser beam was used to illuminate the cold spray particles in cold spraying to obtain a sufficient radiant energy intensity for detection. The measurement was carried out for copper particles of different mean particle sizes. The particle velocity was also estimated using a two-dimensional axisymmetric model developed previously. The simulated velocity agreed well with the measured result. This fact indicates that particle velocity in cold spraying can be predicted reasonably by simulation. Therefore, it is possible to optimize the cold spray process with the aid of the simulation results. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

15.
High velocity oxy-fuel (HVOF) thermal spray has been successfully used to deposit yttria-stabilized zirconia (YSZ) for thermal barrier coating (TBC) applications. Adherent coatings were obtained within a limited range of spray conditions using hydrogen as fuel gas. Spray parameters such as hydrogen-to-oxygen ratio, spray distance, and substrate cooling were investigated. Spray distance was found to have a pronounced effect on coating quality; adherent coatings were obtained for spray distances between 75 and 125 mm from the gun exit for the hydrogen-to-oxygen ratios explored. Compared to air plasma spray (APS) deposited YSZ coatings, the HVOF deposited coatings were more fully stabilized in the tetragonal phase, and of similar density, surface roughness, and cross-sectional microhardness. Notably, fracture surfaces of the HVOF coatings revealed a more homogeneous structure. Many theoretical models predict that it should not be possible to melt YSZ in an HVOF flame, and therefore it should not be possible to deposit viable YSZ coatings by this process. The experimental results in the present work clearly contradict those expectations. The present results can be explained by taking into account the effect of partial melting and sintering on particle cohesion, as follows. Combustion chamber pressures (P o) of ∼3.9 bar (58.8 psi) realized during HVOF gun operation allows adiabatic flame temperature values that are above the zirconia melting temperature. Under these conditions, the Ranz-Marshall heat transfer model predicts HVOF sprayed particle surface temperatures T p that are high enough for partial melting of small (∼10 μm) zirconia particles, T p=(1.10−0.95)T m. Further analysis shows that for larger particles (38 μm), adherent coatings are produced when the particle temperature, T p=0.59−0.60 T m, suggesting that sintering may have a role in zirconia particle deposition during HVOF spray. These results suggest two different bonding mechanisms for powders having a broad particle size distribution.  相似文献   

16.
Nozzle geometry, which influences combustion gas dynamics and, therefore, sprayed particle behavior, is one of the most important parameters in the high-velocity oxygen-fuel (HVOF) thermal spray process. The nozzle geometry is also important in the cold spray method. The gas flows in the entrance convergent section of the nozzle exhibit a relatively higher temperature and are subsonic; thus, this region is most suitable for heating spray particles. In this study, numerical simulation and experiments investigated the effect of the entrance geometry of the gun nozzle on the HVOF process. The process changes inside the nozzle, as obtained by numerical simulation studies, were related to the coating properties. An Al2O3-40 mass% TiO2 powder was used for the experimental studies. The change in entrance convergent section length (rather than barrel part length or total length) of the gun nozzle had a significant effect on the deposition efficiency, microstructure, and hardness. The deposition efficiency and hardness increased as this geometry increased. On the other hand, the calculated and measured particle velocity showed a slight decrease. This effect on the HVOF process will also be applied to the nozzle design for the cold spray method.  相似文献   

17.
Nowadays, wire-arc spraying of chromium steel has gained an important market share for corrosion and wear protection applications. However, detailed studies are the basis for further process optimization. In order to optimize the process parameters and to evaluate the effects of the spray parameters DoE-based experiments had been carried out with high-speed camera shoots. In this article, the effects of spray current, voltage, and atomizing gas pressure on the particle jet properties, mean particle velocity and mean particle temperature and plume width on X46Cr13 wire are presented using an online process monitoring device. Moreover, the properties of the coatings concerning the morphology, composition and phase formation were subject of the investigations using SEM, EDX, and XRD-analysis. These deep investigations allow a defined verification of the influence of process parameters on spray plume and coating properties and are the basis for further process optimization. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

18.
In thermal spraying technique, the changes in the in-flight particle velocities are considered to be only a function of the drag forces caused by the dominating flow regimes in the spray jet. Therefore, the correct understanding of the aerodynamic phenomena occurred at nozzle out let and at the substrate interface is an important task in the targeted improvement in the nozzle and air-cap design as well as in the spraying process in total. The presented work deals with the adapting of an innovative technique for the flow characterization called background-oriented Schlieren. The flow regimes in twin wire arc spraying (TWAS) and high velocity oxygen fuel (HVOF) were analyzed with this technique. The interfering of the atomization gas flow with the intersected wires causes in case of TWAS process a deformation of the jet shape. It leads also to areas with different aero dynamic forces. The configurations of the outlet air-caps in TWAS effect predominantly the outlet flow characteristics. The ratio between fuel and oxygen determine the dominating flow regimes in the HVOF spraying jet. Enhanced understanding of the aerodynamics at outlet and at the substrate interface could lead to a targeted improvement in thermal spraying processes.  相似文献   

19.
Three-dimensional, transient simulations of the plasma flow inside different plasma spray torches have been performed using a local thermodynamic equilibrium model solved by a multiscale finite-element method. The model describes the dynamics of the arc without any further assumption on the reattachment process except for the use of an artificially high electrical conductivity near the electrodes. Simulations of an F4-MB torch from Sulzer-Metco and two configurations of the SG-100 torch from Praxair are presented. The simulations show that, when straight or swirl injection is used, the arc is dragged by the flow and then jumps to form a new attachment, preferably at the opposite side of the original attachment, as has been observed experimentally. Although the predicted reattachment frequencies are at present higher than the experimental ones, the model is suitable as a design tool. This article was originally published inBuilding on 100 Years of Success: Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

20.
基于建立的熔滴过渡高速摄像分析系统,对高速脉冲TCGMAW在脉冲电流占空比变化下的熔滴过渡过程进行观察分析,并就脉冲电流占空比变化对熔滴过渡和焊缝成形质量的影响进行了研究。试验结果表明,在所用焊接规范下,当脉冲电流占空比较小时,焊丝熔化速度不能与送丝速度匹配,熔滴过渡方式表现为短路过渡形式,焊缝成形较差,甚至出现断弧、焊不起来的情况;随着脉冲电流占空比的提高,焊丝熔化能量加大,熔滴过渡方式逐渐过渡到射滴过渡和射流过渡,电弧电压的波动范围变小,焊缝成形良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号