首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to synthesis highly amorphous geopolymer from waste coal fly ash, to be used as an adsorbent for lead Pb(II) removal from aqueous wastewater. The effect of various parameters including geopolymer dosage, initial concentration, contact time, pH and temperature on lead adsorption were investigated. The major components of the used ash in the current study were SiO(2), Al(2)O(3) and Fe(2)O(3) representing 91.53 wt% of its mass. It was found that the synthesized geopolymer has higher removal capacity for lead ions when compared with that of raw coal fly ash. The removal efficiency increases with increasing geopolymer dosage, contact time, temperature, and the decrease of Pb(2+) initial concentration. The optimum removal efficiency was obtained at pH 5. Adsorption isotherm study indicated that Langmuir isotherm model is the best fit for the experimental data than Freundlich model. It was found also that the adsorption process is endothermic and more favorable at higher temperatures.  相似文献   

2.
This study discussed the adsorption kinetics of As(V) onto nanosized iron oxide-coated perlite. The effects of pH, initial concentration of As(V) and common anions on the adsorption efficiency were also investigated. It was observed that a 100% As(V) adsorption was achieved at pH value of 4-8 from the initial concentration containing 1.0 mg-As(V)L(-1) and the adsorption percentage depended on the initial concentration; the phosphate and silicate ions would not interfere with the adsorption efficiency. Furthermore, nanosized iron oxide-coated perlite (IOCP) has been shown to be an effective adsorbent for the removal of arsenate from water. The adsorption kinetics were studied using pseudo-first- and pseudo-second-order models, and the experimental data fitted well with the pseudo-second-order model. Moreover, it suggests that the Langmuir isotherm is more adequate than the Freundlich isotherm in simulating the adsorption isotherm of As(V). The adsorption rate constant is 44.84 L mg(-1) and the maximum adsorption capacity is 0.39 mg g(-1). These findings indicate that the adsorption property of IOCP gives the compound a great potential for applications in environmental remediation.  相似文献   

3.
The demand for effective and inexpensive adsorbents is to increase in response to the widespread recognition of the deleterious health effects of arsenic exposure through drinking water. A novel adsorbent, aluminum-loaded Shirasu-zeolite P1 (Al-SZP1), was prepared and employed for the adsorption and removal of arsenic(V) (As(V)) ion from aqueous system. The process of adsorption follows first-order kinetics and the adsorption behavior is fitted with a Freundlich isotherm. The adsorption of As(V) is slightly dependent on the initial pH over a wide range (3-10). Al-SZP1 was found with a high As(V) adsorption ability, equivalent to that of activated alumina, and seems to be especially suitable for removal of As(V) in low concentration. The addition of arsenite, chloride, nitrate, sulfate, chromate, and acetate ions hardly affected the As(V) adsorption, whereas the coexisting phosphate greatly interfered with the adsorption. The adsorption mechanism is supposed as a ligand-exchange process between As(V) ions and the hydroxide groups present on the surface of Al-SZP1. The adsorbed As(V) ions were desorbed effectively by a 40 mM NaOH solution. Continuous operation was demonstrated in a column packed with Al-SZP1. The feasibility of this technique to practical utilization was also assessed by adsorption/desorption multiple cycles with in situ desorption/regeneration operation.  相似文献   

4.
In the present work, the abilities of native sugar beet pulp (SBP) and fly ash (FA) to remove copper (Cu(2+)) and zinc (Zn(2+)) ions from aqueous solutions were compared. The SBP and FA, an industrial by-product and solid waste of sugar industry, were used for the removal of copper and zinc from aqueous water. Batch adsorption experiments were performed in order to evaluate the removal efficiency of SBP and lignite-based FA. The effect of various operating variables, i.e. initial pH, adsorbent dose, initial metal ion concentration, and time on adsorption of copper and zinc onto the SBP and FA, has been studied. The sorption process was relatively fast and equilibrium was reached after about 60 min of contact. As much as 60-97% removal of copper and zinc for SBP and FA are possible in about 60 min, respectively, under the batch test conditions. Uptake showed a pH-dependent profile. The overall uptake for the SBP is at a maximum at pH 5.5 and gives up to 30.9 mg g(-1) for copper and at pH 6.0 and gives 35.6 mg g(-1) for zinc for SBP, which seems to be removed exclusively by ion exchange and physical sorption. Maximum adsorption of copper and zinc occurred 7.0 and 7.84 mg g(-1) at a pH value of 5.0 and 4.0 for FA, respectively. A dose of 8 g l(-1) of SBP and 8 g l(-1) FA were sufficient for the optimum removal of both the metal ions. The sorption data were represented by the Freundlich for SBP and the Langmuir and Freundlich for FA. The sorption data were better represented by the Langmuir isotherm than by the Freundlich one for FA in the adsorption of zinc ion, suggesting that the monolayer sorption, mainly due to ion exchange. The presence of low ionic strength or low concentration of Na and Cl ions does not have a significant effect on the adsorption of these metals by SBP and FA. The SBP and FA are shown to be effective metal adsorbents for these two metals.  相似文献   

5.
The present work investigates the adsorptive interactions of Cs ions with natural magnetite and synthesized iron ferrite in aqueous medium. The applied adsorbents were characterized by FTIR and DTA/TGA analyses. Batch adsorption studies were performed to evaluate the influences of various experimental parameters like initial pH, contact time and initial concentration on the removal of Cs. The adsorption is strongly dependent on pH of the medium where the removal efficiency increases as the pH turns to alkaline range. The process was very fast initially and maximum adsorption was attained within 60 min of contact. The adsorption process follows a pseudo-second order kinetics with rate constant amounted to 76.83 x 10(4) and 18.75 x 10(4)g mg(-1)h(-1) with ferrite and magnetite. The presence of interfering cations seriously decreases the extent of Cs adsorption. The equilibrium data of Cs adsorption on both adsorbents were analyzed using the Freundlich, Langmuir, Temkin, Dubinin-Radushkevich and Redlich-Peterson isotherm models. The different isotherms constants were determined from the linearzed form of their equations and used to characterize Cs distribution on adsorbent surfaces and provide adopted information about the affinity of the adsorbents towards Cs ions. The values of Langmuir separation factor indicate a favorable Cs adsorption. The apparent free energies from the Dubinin-Radushkevich are 32.29 and 27.51 kJ mol(-1) for Cs adsorption onto iron ferrite and magnetite, respectively.  相似文献   

6.
The sorption of lead(II) ions on rice husk ash   总被引:1,自引:0,他引:1  
Present study deals with the adsorption of Pb(II) from aqueous solution on rice husk ash. Rice husk is a by-product generally obtained from rice mill. Rice husk ash is a solid obtained after burning of rice husk. Batch studies were performed to evaluate the influences of various experimental parameters like pH, initial concentration, adsorbent dosage, contact time and the effect of temperature. Optimum conditions for Pb(II) removal were found to be pH 5, adsorbent dosage 5 g/L of solution and equilibrium time 1h. Adsorption of Pb(II) followed pseudo-second-order kinetics. The effective diffusion coefficient is of the order of 10(-10)m(2)/s. The equilibrium adsorption isotherm was better described by Freuindlich adsorption isotherm model. The adsorption capacity (q(max)) of rice husk ash for Pb(II) ions in terms of monolayer adsorption was 91.74 mg/g. The change of entropy (DeltaS(0)) and enthalpy (Delta H(0)) were estimated at 0.132 kJ/(mol K) and 28.923 kJ/mol respectively. The negative value of Gibbs free energy (Delta G(0)) indicates feasible and spontaneous adsorption of Pb(II) on rice husk ash. The value of the adsorption energy (E), calculated using Dubinin-Radushkevich isotherm, was 9.901 kJ/mol and it indicated that the adsorption process was chemical in nature. Application study was also carried out to find the suitability of the process in waste water treatment operation.  相似文献   

7.
Removal of mercury(II) from wastewater using camel bone charcoal   总被引:1,自引:0,他引:1  
Camel bone charcoal is used as an adsorbent for the removal of Hg(II) from wastewater effluents. The equilibrium data are fitted to Langmiur isotherm rather than linear and Freundlich isotherms. The adsorption capacity Qo is 28.24 mg of Hg(II)/g of the adsorbent. The optimum removal conditions are pH 2, contact time 30 min and temperature 25 degrees C. A comparison of the adsorption capacity (Qo) of camel bone charcoal with different adsorbents previously used for Hg(II) removal from wastewater effluents reveals its remarkable efficiency over many other treated and untreated natural and synthetic adsorbents. X-ray fluorescence and infrared spectrometry of camel bone charcoal after contact with mercury solutions confirm surface adsorption of Hg(II) ions. Electron microscopy reveals the formation of a spongy like structure on the adsorbent surface due to Hg(II) adsorption. Quantitative removal of mercury from hazardous effluents is demonstrated.  相似文献   

8.
The ability of waste residue, generated from alum manufacturing process, to remove fluoride ion from water has been investigated. Series of batch adsorption experiments were carried out to assess parameters that influence the adsorption process. The factors investigated include the effect of contact time, adsorbent dose, thermal pretreatment of the adsorbent, neutralization of the adsorbent, initial fluoride concentration, pH of the solution and effect of co-existing anions. Results showed that Adsorption of fluoride is fairly rapid in first 5min and thereafter increases slowly to reach the equilibrium in about 1h. The removal efficiency of fluoride was increased with adsorbent dosage. About 85% removal efficiency was obtained within 1h at an optimum adsorbent dose of 16g/L for initial fluoride concentration of 10mg/L. Heat treatment and surface neutralization of the adsorbent did not improve the fluoride removal capacity and efficiency. The amount of fluoride adsorbed increased with increasing initial fluoride concentration. The percentage of fluoride removal remains nearly constant within the pH range of 3-8. The adsorption data at ambient pH were well fitted to the Dubinin-Radushkevick (D-R) isotherm model with a capacity of 332.5mg/g of the adsorbent. The adsorption kinetic was found to follow a pseudo-second-order rate equation with an average rate constant of 2.25gmin(-1)mg(-1). The presence of bicarbonate at higher concentrations (100-500mg/L) decreased the fluoride removal efficiency while other anions (chloride, sulfate, phosphate and nitrate) have no significant effect within the concentration range tested. The overall result shows that the waste residue is efficient defluoridating material.  相似文献   

9.
Adsorptive removal of methylene blue by tea waste   总被引:3,自引:0,他引:3  
The potentiality of tea waste for the adsorptive removal of methylene blue, a cationic dye, from aqueous solution was studied. Batch kinetics and isotherm studies were carried out under varying experimental conditions of contact time, initial methylene blue concentration, adsorbent dosage and pH. The nature of the possible adsorbent and methylene blue interactions was examined by the FTIR technique. The pH(pzc) of the adsorbent was estimated by titration method and a value of 4.3+/-0.2 was obtained. An adsorption-desorption study was carried out resulting the mechanism of adsorption was reversible and ion-exchange. Adsorption equilibrium of tea waste reached within 5h for methylene blue concentrations of 20-50mg/L. The sorption was analyzed using pseudo-first-order and pseudo-second order kinetic models and the sorption kinetics was found to follow a pseudo-second order kinetic model. The extent of the dye removal increased with increasing initial dye concentration. The equilibrium data in aqueous solutions were well represented by the Langmuir isotherm model. The adsorption capacity of methylene blue onto tea waste was found to be as high as 85.16mg/g, which is several folds higher than the adsorption capacity of a number of recently studied in the literature potential adsorbents. Tea waste appears as a very prospective adsorbent for the removal of methylene blue from aqueous solution.  相似文献   

10.
In this study, removal of Cu(2+), Cd(2+) and Pb(2+) from aqueous solutions by adsorption onto pyrite and synthetic iron sulphide (SIS) was investigated as a function of pH, contact time, adsorbent dosage, initial metal concentration and temperature. It has been determined that the adsorption of metal ions onto both adsorbents is pH dependent and the adsorption capacities increase with the increasing temperature. The mechanisms governing the metal removal processes were determined as chemical precipitation at low pH (<3) due to H(2)S generation and adsorption at high pH (in the range of 3-6). The metal adsorption yields also increased with the increasing adsorbent dosage and contact time and reached to equilibrium for both adsorbents. The Cu(2+), Cd(2+) and Pb(2+) adsorption capacities of both adsorbents decrease in the order of Pb(2+)>Cu(2+)>Cd(2+). Except for cadmium, little fraction of copper and lead in the solid adsorption residues was desorbed in acidic media.  相似文献   

11.
Solid-state conversion of fly ash to an amorphous aluminosilicate adsorbent (geopolymer) has been investigated under different conditions and the synthesised material has been tested for Cu2+ removal from aqueous solution. It has been found that higher reaction temperature and Na:FA ratio will make the adsorbents achieving higher removal efficiency. The adsorbent loading and Cu2+ initial concentration will also affect the removal efficiency while the adsorption capacity exhibits similarly at 30-40 degrees C. The adsorption capacity of the synthesised adsorbent shows much higher value than fly ash and natural zeolite. The capacity is 0.1, 3.5 and 92 mg/g, for fly ash, natural zeolite, and FA derived adsorbent, respectively. The kinetic studies indicate that the adsorption can be fitted by the second-order kinetic model. Langmuir and Freundlich isotherms also can fit to the adsorption isotherm.  相似文献   

12.
Abstract

In the present study, lanthanum modified carbon nanotubes (La-CNTs) were prepared by the impregnation method and used as adsorbents to remove oxytetracycline (OTC) from aquaculture wastewater. La-CNTs were characterized by SEM, EDS, XRD, BET analysis. The effects of adsorbent dosage, concentration of OTC, adsorption time, pH and interfering ions on the adsorption of OTC by La-CNTs were investigated. The optimum adsorbent dosage, OTC concentration, adsorption equilibrium time and pH for OTC adsorption by La-CNTs are 0.03?g, 20?mg/L, 180?min and 7, respectively. The outcome of the kinetics studies showed a significant linear correlation between the experimental results and the quasi-second-order kinetics model. As an adsorption isotherm model, the Langmuir model showed a very good consistency with the adsorption of OTC by La-CNTs, as the maximum adsorption quantity reached 117.23?mg/g. Through the thermodynamic analysis showed that the adsorption of OTC by La-CNTs was an endothermic process of entropy increase, which occurs spontaneously. The predominant forces promoting this adsorption were van der Waals force, π-π electron donor-acceptor interaction, and electrostatic interaction.  相似文献   

13.
Silica gel is widely used in research laboratories, especially for the purification of organic compounds. Consequently, waste silica gel is generated in increasing amounts. In this work, waste silica was modified by coating its surface with iron oxide aiming to obtain an effective adsorbent for metal removal from wastewater. In the preparation of the adsorbent, the optimal pretreatment temperature and iron concentration were investigated. The coated waste silica was characterized for BET surface area, pore size, specific pore volume and iron content. Iron oxide-coated waste silica was tested for the adsorption of Pb(II), Cu(II), Cd(II) and Ni(II) from solutions in a batch system. The effect of contact time, pH and salt concentration on metal adsorption was investigated. It was found that the adsorption of metals occurred rapidly and reached equilibrium within 30 min. The pH suitable for metal adsorption was between 6 and 7 and leaching of iron from the coating was observed only at pH 3 or lower. The presence of salt reduced the adsorption efficiency of the adsorbent. The adsorption behavior followed both Langmuir and Freundlich isotherms (25 degrees C). Finally, the efficacy of the adsorbents was investigated using aqueous lab waste where removal efficiencies ranging from 62 to 89% were achieved when the initial metal concentrations ranged from 13 to 42 mg L(-1).  相似文献   

14.
Areca waste (AW) has been investigated as metal biosorbent for cadmium and copper from aqueous solution for its availability as food waste and also for its cellulosic matrix rich of potential metal binding active sites. The effect of various parameters on adsorption process such as contact time, solution pH, amount of AW and initial concentration of metal ions was studied at room temperature to optimize the conditions for maximum adsorption. Maximum metal sorption was found to occur at pH 5.6. Adsorption process revealed that the initial uptake was rapid and equilibrium was established about in 1h for cadmium and copper. The equilibrium sorption data for single metal systems at pH 5.6 were described by the Langmuir, Freundlich and D-R isotherm models. The adsorption isotherm studies clearly indicated that the adsorptive behaviour of metal ions on AW not only the Langmuir assumptions but also the Freundlich and the D-R assumptions. The highest value of Langmuir maximum uptake, (b), was found for cadmium (1.12 mg/g) and copper (2.84 mg/g). Similar Freundlich empirical constants, K, were obtained for cadmium (1.086) and copper (1.119). Ion-exchange and surface adsorption might be involved in the adsorption process of cadmium and copper. Desorption studies revealed that cadmium and copper can be easily removed from AW by altering the pH values of the solution using HNO(3), indicating that AW are a promising adsorbent for wastewater treatment.  相似文献   

15.
Present study deals with the adsorption of Auramine-O (AO) dye by bagasse fly ash (BFA) and activated carbon-commercial grade (ACC) and laboratory grade (ACL). BFA is a solid waste obtained from the particulate collection equipment attached to the flue gas line of the bagasse fired boilers of cane sugar mills. Batch studies were performed to evaluate the influences of various experimental parameters like initial pH (pH(0)), contact time, adsorbent dose and initial concentration (C(0)) for the removal of AO. Optimum conditions for AO removal were found to be pH(0) approximately 7.0 and equilibrium time approximately 30 min for BFA and approximately 120 min for activated carbons. Optimum BFA, ACC and ACL dosages were found to be 1, 20 and 2g/l, respectively. Adsorption of AO followed pseudo-second order kinetics with the initial sorption rate for adsorption on BFA being the highest followed by those on ACL and ACC. The sorption process was found to be controlled by both film and pore diffusion with film diffusion at the earlier stages followed by pore diffusion at the later stages. Equilibrium isotherms for the adsorption of AO on BFA, ACC and ACL were analyzed by Freundlich, Langmuir, Dubinin-Radushkevich, and Temkin isotherm equations using linear correlation coefficient. Langmuir isotherm gave the best correlation of adsorption for all the adsorbents studied. Thermodynamic study showed that adsorption of AO on ACC (with a more negative Gibbs free energy value) is more favoured. BFA which was used without any pretreatment showed high surface area, pore volume and pore size exhibiting its potential to be used as an adsorbent for the removal of AO.  相似文献   

16.
Removal of As(V) and As(III) by reclaimed iron-oxide coated sands   总被引:1,自引:1,他引:0  
This paper aims at the feasibility of arsenate and arsenite removal by reclaimed iron-oxide coated sands (IOCS). Batch experiments were performed to examine the adsorption isotherm and removal performance of arsenic systems by using the IOCS. The results show that the pH(zpc) of IOCS was about 7.0 +/- 0.4, favoring the adsorption of As(V) of anion form onto the IOCS surface. As the adsorbent dosage and initial arsenic concentration were fixed, both the As(V) and As(III) removals decrease with increasing initial solution pH. Under the same initial solution pH and adsorbent dosage, the removal efficiencies of total arsenic (As(V) and As(III)) were in the order as follows: As(V)>As(V)+As(III)>As(III). Moreover, adsorption isotherms of As(V) and As(III) fit the Langmuir model satisfactorily for the four different initial pH conditions as well as for the studied range of initial arsenic concentrations. It is concluded that the reclaimed IOCS can be considered as a feasible and economical adsorbent for arsenic removal.  相似文献   

17.
Studies on the utilization of low cost adsorbents for removal of heavy metals from wastewaters are gaining attention. Fired coal fly ash, a solid by-product that is produced in power plants worldwide in million of tonnes, has attracted researchers' interest. In this work, fly ash was shaped into pellets that have diameter in-between 3-8mm, high relative porosity and very good mechanical strength. The pellets were used in adsorption experiments for the removal of copper and cadmium ions from aqueous solutions. The effect of agitation rate, equilibration time, pH of solution and initial metal concentration were studied. The adsorption of both cations follows pseudo-second order kinetics reaching equilibrium after an equilibration time of 72 h. The experimental results for copper and cadmium adsorption fit well to a Langmuirian type isotherm. The calculated adsorption capacities of pellets for copper and cadmium were 20.92 and 18.98 mg/g, respectively. Desorption experiments were performed in several extraction media. The results showed that both metals were desorbed substantially from pellets under acidic solutions. For this reason, metal saturated pellets were encapsulated in concrete blocks synthesized from cement and raw pulverized fly ash in order to avoid metal desorption. The heavy metals immobilization after encapsulation in concrete blocks was tested through desorption tests in several aqueous media. The results showed that after 2 months in acidic media with pH 2.88 and 4.98 neither copper nor cadmium were desorbed thus indicating excellent stabilization of heavy metals in the concrete matrix. As a conclusion, the results showed that fly ash shaped into pellets could be considered as a potential adsorbent for the removal of copper and cadmium from wastewaters. Moreover, the paper proposes an efficient and simple stabilization process of the utilized adsorbents thus guarantying their safe disposal in industrial landfills and eliminating the risk of pollution for groundwater and other natural water receivers.  相似文献   

18.
Modification of kaolinite clay mineral with orthophosphate (p-modified sample) enhanced adsorption of Pb and Cd ions from aqueous solutions of the metal ions. Increasing pH of solutions of metal ions, increasing adsorbent dose and increasing concentration of metal ion, increased the adsorption of metal ions. Adsorption of both metal ions simultaneously on both unmodified and p-modified samples indicates that adsorption of one metal ion is suppressed to some degree by the other. The presence of electrolyte and their increasing concentration reduced the adsorption capacities of both unmodified and p-modified samples for the metal ions. Ca-electrolytes had more negative effect on the adsorption capacities of the adsorbents than Na-electrolytes. Ca-electrolytes reduced adsorption capacities of the adsorbents for Pb and Cd ions. From Langmuir plots it was observed that these electrolytes increased the binding energy constant of the metal ions unto the adsorbents especially on the p-modified samples. The rate of adsorption of Pb and Cd ions on p-modified adsorbent were increased and equilibrium of metal ion solution were more quickly reached (8min for Pb ions and 12min for Cd ions) with p-modified adsorbent as against 20min for adsorption of both metal ions on unmodified adsorbent when 200mg/L of metal ion solutions were used during the kinetic studies. When adsorption data were fitted against Langmuir, Freundlich, Toth and Langmuir-Freundlich isotherms, satisfactory fits were found with the Freundlich isotherm. However, at low concentration of metal ions, data also showed satisfactory fits to Langmuir isotherm.  相似文献   

19.
Porous granular ceramic adsorbents containing dispersed aluminum and iron oxides were synthesized by impregnating with salt solutions followed by precipitation at 600°C. In the present work detailed studies were carried out to investigate the effect of contact time, adsorbent dose, initial solution pH and co-existing anions. Characterization studies on the adsorbent by SEM, XRD, EDS, and BET analysis were carried out to clarify the adsorption mechanism. The adsorbents were sphere in shape, 2-3mm in particle size, highly porous and showed specific surface area of 50.69 sq m/g. The fluoride adsorption capacity of prepared adsorbent was 1.79 mg/g, and the maximum fluoride removal was obtained at pH 6. Both the Langmuir and Freundlich isotherm models were found to represent the measured adsorption data well. The experimental data were well explained with pseudo-second-order kinetic model. Results from this study demonstrated potential utility of Al/Fe dispersed in porous granular ceramics that could be developed into a viable technology for fluoride removal from aqueous solution.  相似文献   

20.
In this study, sepiolite, fly ash and apricot stone activated carbon (ASAC) were used as adsorbents for the investigation of the adsorption kinetics, isotherms and thermodynamic parameters of the basic dye (Astrazon Blue FGRL) from aqueous solutions at various concentrations (100-300 mg/L), adsorbent doses (3-12 g/L) and temperatures (303-323 K). The result showed that the adsorption capacity of the dye increased with increasing initial dye concentration, adsorbent dose and temperature. Three kinetic models, the pseudo-first-order, second-order, intraparticle diffusion, were used to predict the adsorption rate constants. The kinetics of adsorption of the basic dye followed pseudo-second-order kinetics. Equations were developed using the pseudo-second-order model which predicts the amount of the basic dye adsorbed at any contact time, initial dye concentration and adsorbent dose within the given range accurately. The adsorption equilibrium data obeyed Langmuir isotherm. The adsorption capacities (Q0) calculated from the Langmuir isotherm were 181.5 mg/g for ASAC, 155.5 mg/g for sepiolite and 128.2 mg/g for fly ash at 303 K. Thermodynamical parameters were also evaluated for the dye-adsorbent systems and revealed that the adsorption process was endothermic in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号