首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Cystic fibrosis (CF) lung disease has been linked to multiple primary defects in airway epithelia caused by a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) gene. These defects include altered Cl- and Na+ permeability as well as intracellular defects in glycoprotein processing. This apparent diversity in CFTR function is reflected in the complex patterning of CFTR expression in airway epithelia. Such complexities present challenges in the design of CF gene therapies that are capable of reconstituting the endogenous patterns of CFTR gene expression in appropriate target cells. Using a human bronchial xenograft model of the CF airway, we have evaluated the efficacy of recombinant adenoviral and cationic liposome-mediated gene transfer to correct Cl- permeability and mucous sulfation defects found in CF lung disease. Results from these studies demonstrated a clear vector-specific complementation profile for these two defects that was dependent on the type of cell transduced and the level of transgene expression. Single-dose administration of recombinant adenovirus effectively transduced high levels of CFTR transgene expression in 11 +/- 1% of epithelial cells and was capable of correcting cAMP-induced changes in Cl- permeability to 91 +/- 14% that seen in non-CF airways. However, this level of transgene expression was incapable of reversing defects in mucous sulfation due to the lack of efficient targeting to goblet cells. In contrast, cationic liposome-mediated delivery of CFTR encoding plasmids to CF airways achieved extremely low levels of transgene expression with insignificant correction (7.4 +/- 2.4%) of cAMP-induced Cl- permeability. This low level of transgene expression, however, efficiently reduced mucous sulfation to levels seen in non-CF airways. Differences in the complementation profiles of these two vectors in correcting Cl- permeability and mucous sulfation defects mirror the ability of recombinant adenovirus and liposomes to reconstitute only certain features of the endogenous distribution and abundance of CFTR protein expression. Such findings suggest that the level of intracellular CFTR required to facilitate proper glycoprotein processing may be much lower than that needed to mediate bulk Cl- flow across the airway epithelium. In summary, these data present the first example by which two different vector systems can efficiently complement independent primary defects associated with a single dysfunctional gene.  相似文献   

3.
Epithelial cells in primary ovine lens cultures express the gap junction proteins connexin43 (Cx43) and connexin49 (Cx49; a.k.a. MP70), a homologue of mouse connexin50. In contrast, lens cultures of differentiated, fiber-like cells (termed lentoid cells) express Cx49 and connexin46 (Cx46), but not Cx43. To investigate the regulation of lens cell gap junctions by protein kinase C (PKC), differentiating lens cultures were treated with the PKC activator 12-O-tetradecanoylphorbol-13-acetate (beta-TPA). Within 10 min, beta-TPA significantly inhibited the transfer of Lucifer Yellow dye between epithelial, but not lentoid, cells. This inhibition was correlated with the phosphorylation of Cx43 and was followed by the gradual disappearance of Cx43 from cell interfaces. The protein kinase inhibitor staurosporine prevented Cx43 phosphorylation and the loss of Cx43 from intercellular junctions. Following treatment of cultures with beta-TPA for 2-6 hr, Cx49 disappeared from epithelial cell interfaces, and by 24 hr of beta-TPA treatment, levels of Cx49 detected on immunoblots of purified epithelial membrane fractions had also diminished significantly. The beta-TPA-induced loss of Cx49 both from regions of epithelial cell contact and from isolated membranes was correlated with the disappearance of Cx49 mRNA. In contrast to the epithelial connexins, the lentoid connexins Cx49 and Cx46 were unaffected by even extended beta-TPA treatment. In spite of lentoid dye transfer being refractory to beta-TPA, significant levels of PKC-alpha (a beta-TPA-sensitive isoform) were detected in the lentoid cell. The response of lens gap junctions to beta-TPA depends upon the stage of differentiation and the complement of connexins expressed. The contrasting effects of beta-TPA on Cx43 and Cx49 in lens epithelial cells indicate a fundamental difference in the regulation of these connexin proteins in the developing mammalian lens.  相似文献   

4.
A replication-defective vector based on human immunodeficiency virus (HIV) was evaluated for gene transfer directed to the lung. The tropism of this vector has been expanded through the incorporation of the vesticular stomatitis virus G protein into its envelope. The HIV vector effectively transduced nondividing airway epithelial cells in vitro whereas a murine-based retroviral vector did not. Experiments in a human bronchial xenograft model demonstrated high-level gene transduction with a cystic fibrosis transmembrane conductance regulator (CFTR) HIV vector into undifferentiated, cystic fibrosis (CF)-derived cells of the xenograft. CFTR expression was stable and capable of functional correction of the CF defect after the graft matured. The HIV vector did not effectively transduce cells of the xenograft when instilled after the epithelium had differentiated. This block to transduction appears to be at the level of entry, although post entry restrictions cannot be ruled out. Further development of this vector system for CF gene therapy should focus on a better understanding of potential entry and post entry blocks.  相似文献   

5.
Injury to the alveolar region is a hallmark of the adult respiratory distress syndrome (ARDS) whereas injury to the epithelium of the conducting airways is a characteristic of asthma. Reactive oxygen species have been implicated as mediators of lung injury in both of these conditions. We have investigated the relationship between intracellular nonprotein thiols (NPSH), and the release of the cytosolic enzyme lactate dehydrogenase (LDH), as an index of cell injury, following treatment of the human alveolar type II-like epithelial cell line (A549 cells) or the human bronchial epithelial cell line (16HBE140-) with hydrogen peroxide (H2O2). We have also assessed the protective effects of pre-incubation of both of these cells lines with H2O2 or enhancement of intracellular NPSH against H2O2-induced cell injury. Exposure of A549 and 16HBE140- cells to H2O2 (0.1 mM and 1 mM respectively for 16 h) produced the release of 40% of the total cellular LDH. H2O2 exposure produced an initial dose-dependent decrease in NPSH in A549 cells, with a subsequent increase to above control values. 16HBE140- cells also showed a dose-dependent decrease in NPSH following exposure to H2O2. Pretreatment of A549 cells with 0.1 mM H2O2 followed by subsequent exposure to H2O2 did not protect against H2O2-induced LDH release in this epithelial cell line. Pre-incubation with 2 mM N-acetylcysteine (NAC) increased NPSH but not intracellular reduced glutathione and resulted in total inhibition of H2O2-induced LDH release in both cell types. Pretreatment with reduced glutathione protected both cell types against the injurious effects of H2O2, whereas glutathione monethyl ester (GSHMEE) only partially protected A549 cells and had no effect in 16HBE140- cells. Intracellular cysteine levels were increased in both cell lines following NAC exposure but not sufficiently to account for the increase in NPSH levels. These observations raise the possibility that a critical concentration of nonprotein thiols may be necessary to protect pulmonary epithelial cells against hydrogen peroxide-induced injury.  相似文献   

6.
7.
To investigate abnormalities of airway epithelial ion transport underlying chronic inflammatory airway diseases, we performed electrophysiological, histological, and molecular biological experiments using rabbits exposed to SO2 as a model of bronchitis. By comparison with control, the SO2-exposed trachea exhibited decreased short circuit current (Isc) and conductance associated with increased potential difference. In normal trachea, apical ATP induced a transient Isc activation followed by a suppression, whereas the bronchitis model exhibited a prolonged activation without suppression. This pathological ATP response was abolished by diphenylamine 2-carboxylate or Cl--free bath solution. A significant increase in net Cl- flux toward the lumen was observed after ATP in our bronchitis model. Isoproterenol or adenosine evoked a sustained Isc increase in SO2-exposed, but not in normal, tracheas. The Northern blot analysis showed a strong expression of cystic fibrosis transmembrane conductance regulator (CFTR) mRNA in SO2-exposed epithelium. The immunohistochemical study revealed a positive label of CFTR on cells located luminally only in SO2-exposed rabbits. We concluded that the prolonged ATP response in our bronchitis model was of a superimposed normal and adenosine-activated current. The latter current was also activated by isoproterenol and appeared as a signature current for the bronchitis model airway. This was likely mediated by CFTR expressed in the course of chronic inflammation.  相似文献   

8.
The absence or mislocalization of cystic fibrosis transmembrane conductance regulator (CFTR) is regarded as being specific for cystic fibrosis (CF). In principle, the supply of a non-CF lung transplant to a CF patient should bring up normal CFTR expression in the lower airways. Immunolocalization of CFTR and of epithelial differentiation markers (ie, cytokeratins 13, 14, and 18, and desmoplakins 1 and 2) was carried out on 21 mucosal biopsies from the upper lobe of grafts in non-CF (n = 12) and CF patients (n = 9) retrieved between days 23 and 1,608 after lung transplantation. Biopsy specimens from seven non-CF and four CF patients presented either a pseudostratified respiratory epithelium or slight basal cell hyperplasia. CFTR was distributed at the apical membrane of the ciliated cells. In remodeled epithelia with basal cell hyperplasia or squamous metaplasia, CFTR was either weakly expressed in the cytoplasm of the superficial epithelial cells or was undetectable. The extent of epithelium remodeling was significantly correlated with an impairment of lung function. The results suggest that posttransplant airway epithelium dedifferentiation of the graft leads to the loss of properly targeted CFTR irrespective of the underlying disease of the recipient.  相似文献   

9.
CFTR is a cyclic AMP (cAMP)-activated chloride (Cl-) channel and a regulator of outwardly rectifying Cl- channels (ORCCs) in airway epithelia. CFTR regulates ORCCs by facilitating the release of ATP out of cells. Once released from cells, ATP stimulates ORCCs by means of a purinergic receptor. To define the domains of CFTR important for Cl- channel function and/or ORCC regulator function, mutant CFTRs with N- and C-terminal truncations and selected individual amino acid substitutions were created and studied by transfection into a line of human airway epithelial cells from a cystic fibrosis patient (IB3-1) or by injection of in vitro transcribed complementary RNAs (cRNAs) into Xenopus oocytes. Two-electrode voltage clamp recordings, 36Cl- efflux assays, and whole cell patch-clamp recordings were used to assay for the Cl- channel function of CFTR and for its ability to regulate ORCCs. The data showed that the first transmembrane domain (TMD-1) of CFTR, especially predicted alpha-helices 5 and 6, forms an essential part of the Cl- channel pore, whereas the first nucleotide-binding and regulatory domains (NBD1/R domain) are essential for its ability to regulate ORCCs. Finally, the data show that the ability of CFTR to function as a Cl- channel and a conductance regulator are not mutually exclusive; one function could be eliminated while the other was preserved.  相似文献   

10.
The human lung carcinoma cell line PG is defective in gap junctional intercellular communication (GJIC). Connexin43 (Cx43) mRNA, which is expressed in normal human lung cells, is undetectable in these tumor cells. To explore if up-regulation of Cx43 gene expression will suppress malignancy of PG cells, Cx43 cDNA was co-transfected with pSV2neo cDNA into PG cells. Control cells were transfected with the blank vector plus neo cDNA. Several stable Cx43 transfectant clones, which acquired high levels of Cx43 expression and the capacity of GJIC, were compared with control clones and the parental cell line, both of which lacked Cx43 expression and GJIC. The control clones resembled the parental cells in exhibiting high cell growth rate, weak attachment to the substratum and a high frequency of colony formation in soft agar. In contrast to the control cells, Cx43 transfected clones showed reduced growth rate, enhanced attachment to the substratum and inhibition of colony formation in soft agar. In vivo results from nude mice experiments showed high tumorigenicity with control clones and inhibition of tumorigenicity in Cx43 transfected clones. The consistency between in vitro and in vivo results strongly suggests a tumor suppressing effect of the Cx43 gene in human lung carcinoma cells.  相似文献   

11.
The cystic fibrosis (CF) transmembrane regulator (CFTR) is a cyclic AMP-dependent Cl- channel that is defective in CF cells. It has been hypothesized that CFTR exhibits an ATP release function that controls the airway surface ATP concentrations. In airway epithelial cells, CFTR-independent Ca2+-activated Cl- conductance is regulated by the P2Y2 receptor. Thus, ATP may function as an autocrine signaling factor promoting Cl- secretion in normal but not CF epithelia if ATP release is defective. We have tested for CFTR-dependent ATP release using four independent detection systems. First, a luciferase assay detected no differences in ATP concentrations in the medium from control versus cyclic AMP-stimulated primary normal human nasal epithelial (HNE) cells. A marked accumulation of extracellular ATP resulted from mechanical stimulation effected by a medium displacement. Second, high pressure liquid chromatography analysis of 3H-labeled species released from [3H]adenine-loaded HNE cells revealed no differences between basal and cyclic AMP-stimulated cells. Mechanical stimulation of HNE cells again resulted in enhanced accumulation of extracellular [3H]ATP and [3H]ADP. Third, when measuring ATP concentrations via nucleoside diphosphokinase-catalyzed phosphorylation of [alpha-33P]dADP, equivalent formation of [33P]dATP was observed in the media of control and cyclic AMP-stimulated HNE cells and nasal epithelial cells from wild-type and CF mice. Mechanically stimulated [33P]dATP formation was similar in both cell types. Fourth, 1321N1 cells stably expressing the human P2Y2 receptor were used as a reporter system for detection of ATP via P2Y2 receptor-promoted formation of [3H]inositol phosphates. Basal [3H]inositol phosphate accumulation was of the same magnitude in control and CFTR-transduced cells, and no change was observed following addition of forskolin and isoproterenol. In both cell types, mechanical stimulation resulted in hexokinase-attenuable [3H]inositol phosphate formation. In summary, our data suggest that ATP release may be triggered by mechanical stimulation of cell surfaces. No evidence was found supporting a role for CFTR in the release of ATP.  相似文献   

12.
Purines can modify ciliary epithelial secretion of aqueous humor into the eye. The source of the purinergic agonists acting in the ciliary epithelium, as in many epithelial tissues, is unknown. We found that the fluorescent ATP marker quinacrine stained rabbit and bovine ciliary epithelia but not the nerve fibers in the ciliary bodies. Cultured bovine pigmented and nonpigmented ciliary epithelial cells also stained intensely when incubated with quinacrine. Hypotonic stimulation of cultured epithelial cells increased the extracellular ATP concentration by 3-fold; this measurement underestimates actual release as the cells also displayed ecto-ATPase activity. The hypotonically triggered increase in ATP was inhibited by the Cl--channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) in both cell types. In contrast, the P-glycoprotein inhibitors tamoxifen and verapamil and the cystic fibrosis transmembrane conductance regulator (CFTR) blockers glybenclamide and diphenylamine-2-carboxylate did not affect ATP release from either cell type. This pharmacological profile suggests that ATP release is not restricted to P-glycoprotein or the cystic fibrosis transmembrane conductance regulator, but can proceed through a route sensitive to NPPB. ATP release also was triggered by ionomycin through a different NPPB-insensitive mechanism, inhibitable by the calcium/calmodulin-activated kinase II inhibitor KN-62. Thus, both layers of the ciliary epithelium store and release ATP, and purines likely modulate aqueous humor flow by paracrine and/or autocrine mechanisms within the two cell layers of this epithelium.  相似文献   

13.
Endogenous proteolytic enzymes have been shown to be potential sources of airway inflammation inducing proinflammatory cytokine release from respiratory epithelial cells; however, whether any of the exogenous proteases from important allergen sources such as the house dust mite present in our environment behave in a similar fashion is unclear. To this end, we have investigated whether the mite cysteine and serine proteolytic allergens, Der p 1 and Der p 9, respectively, induced cytokine production from primary human bronchial epithelial cells and from the epithelial cell line BEAS-2B. Cells were exposed to mite proteases, and cells or supernatants were assayed for cytokine release, cytokine mRNA expression, and modulation of intracellular calcium ion concentration. Both proteases induced concentration- and time-dependent increases in the release of granulocyte-macrophage (GM)-CSF, IL-6, and IL-8 as well as an increase in the expression of IL-6 mRNA. Cytokine release and mRNA expression were first observed at 8 h and 2 h after protease exposure, respectively. The minimum concentration of each protease that was required to stimulate GM-CSF, IL-6, and IL-8 release was approximately 10 ng/ml. Cytokine release was initiated by 1 to 2 h of protease exposure, although maximum concentrations were detected only after a 24-h incubation. IL-6, but not IL-8 and GM-CSF, was shown to be degraded by both proteases at concentrations of > 2 microg/ml. The proteases also stimulated changes in the intracellular calcium ion concentration. All mite protease-induced phenomena were inhibited using appropriate protease inhibitors. These results suggest that the proteolytic activity of an allergen may stimulate the release of proinflammatory cytokines from human bronchial epithelium.  相似文献   

14.
The identification of gap-junctional proteins (connexins) and the preparation of related antibodies provides new tools to study patterns of intercellular communication in tumors. Focusing on the biology of human bladder carcinoma, we compared the expression of gap-junctional proteins (connexins Cx26, Cx32, and Cx43) with a dye-coupling assay for gap-junctional intercellular communication in three cell lines with different urothelial differentiation. The cell lines HCV-29, RT4, and J82 were initially grown as monolayers of different ages. Connexin expression was found mostly positive over the time of culture and found constantly negative only in J82 cells for Cx26 and HCV-29 cells for Cx32. In HCV-29 cells, Cx26 increased in positivity over the time of culture. Western blotting with the antibodies confirmed the findings. Comparisons of dye transfer using Lucifer Yellow showed an increase of coupling in the normal urothelial cell line HCV-29 in contrast to a decrease of coupling in the tumor cell lines. Data were extended by multicellular spheroid (MCS) co-cultures with the stromal fibroblast line N1. In three-dimensional cultures as MCSs, Cx26 was increased in proximity of RT4 tumor cells to fibroblasts, and positivity was maintained in J82 cells. E-cadherin expression in cell lines showed no change in dependence of growth state. The data suggest that Cx26 plays a role in negative growth control or differentiation of urothelial cells. Preliminary comparative data on normal and neoplastic urothelium show all three connexins in normal urothelium, in contrast to varying amounts of Cx43 and low amounts of Cx32 in tumors and evident loss of Cx26 in low-grade tumors. Discrepancies between monolayer and MCS cultures are most likely due to higher differentiation in MCSs, and the continuation of systematic work with heterologous MCSs is indicated for more information on the role of gap-junctional proteins in human tumors.  相似文献   

15.
Pneumococcal adherence to alveolar epithelial cells and nasopharyngeal epithelial cells has been well characterized. However, the interaction of Streptococcus pneumoniae with bronchial epithelial cells has not been studied. We have now shown that pneumococci bind specifically to a human bronchial epithelial cell line (BEAS-2B cells). Pneumococci adhered to BEAS-2B cells in a time- and dose-dependent manner. These results suggest that the bronchial epithelium may serve as an additional site of attachment for pneumococci and demonstrate the utility of the BEAS-2B cell line for studying mechanisms of pneumococcal infection.  相似文献   

16.
17.
We evaluated the acute effects of ibuprofen and salicylic acid on cAMP-mediated Cl- secretion (Isc) in both colonic and airway epithelia. In T84 cells, ibuprofen inhibited the forskolin-dependent Isc in a concentration-dependent manner, having an apparent Ki of 142 microM. Salicylic acid inhibited Isc with an apparent Ki of 646 microM. We determined whether ibuprofen would also inhibit the forskolin-stimulated Isc in primary cultures of mouse trachea epithelia (MTE) and human bronchial epithelia (HBE). Similar to our results in T84 cells, ibuprofen (500 microM) inhibited the forskolin-induced Isc in MTEs and HBEs by 59+/-4% (n = 11) and 39+/-6% (n = 8), respectively. Nystatin was employed to selectively permeabilize the basolateral or apical membrane to determine the effect of ibuprofen on apical Cl- (ICl) and basolateral K+ (IK) currents after stimulation by forskolin. After forskolin stimulation, ibuprofen (500 microM) reduced both the ICl and IK; reducing ICl and IK by 60 and 15%, respectively. To determine whether this inhibition of ICl was due to the inhibition of CFTR, the effects of ibuprofen and salicylic acid on CFTR Cl- channels in excised, inside-out patches from L-cells were evaluated. Ibuprofen (300 microM) reduced CFTR Cl- current by 60+/-16% and this was explained by a short-lived block (approximately 1.2 ms) which causes an apparent reduction in single channel amplitude from 1.07+/-0.04 pA to 0.59+/-0.04 pA (n = 3). Similarly, salicylic acid (3 mM) reduced CFTR Cl- current by 50+/-8% with an apparent reduction in single channel amplitude from 1.08+/-0.03 pA to 0.48+/-0.06 pA (n = 4). Based on these results, we conclude that the NSAIDs ibuprofen and salicylic acid inhibit cAMP-mediated Cl- secretion in human colonic and airway epithelia via a direct inhibition of CFTR Cl- channels as well as basolateral membrane K+ channels. This may reduce their efficacy in conjunction with other therapeutic strategies designed to increase CFTR expression and/or function in secretory epithelia.  相似文献   

18.
OBJECTIVE: To determine which types of kinin receptor are present in human bronchial epithelial cells we studied the capability of bradykinin to mobilize intracellular Ca2+ ([Ca2+]i) in a human bronchial epithelial cell line (16HBE cells). MATERIAL: Human bronchial epithelial cell line transformed with an original defective simian virus 40 (SV40). TREATMENT: Bradykinin (0.1 pM to 0.1 microM), des-Arg9 bradykinin (1 microM), des-Arg10) kallidin (1 microM), indomethacin (1 microM), phosphoramidon (1 microM), captopril (1 microM), des-Arg9-[Leu8]bradykinin (1 microM), HOE 140 (DArg-[Hyp3, Thi5, DTic , Oic8]-bradykinin) (1 microM), and NPC 16731 (DArg-[Hyp3, Thi5, DTic7, Tic8]-bradykinin) (1 microM). METHODS: The mobilization of [Ca2+]i was determined by the fura-2 method. Two sample Wilcoxon rank-sum (Mann-Whitney) test was used for statistical calculations. RESULTS: Bradykinin, but not the selective agonists for kinin B1 receptor des-Arg9 bradykinin and des-Arg10 kallidin, increased the mobilization of [Ca2+]i (EC50, 0.079+/-0.009nM) in 16HBE cells in a concentration-dependent manner. Pretreatment with the cyclooxygenase inhibitor indomethacin (1 microM) or the peptidase inhibitors, phosphoramidon (1 microM) or captopril (1 microM), did not affect the response to bradykinin. The kinin B1 receptor antagonist, des-Arg9-[Leu8]bradykinin (1 microM), was inactive. HOE 140 and NPC 16731, two selective antagonists of the kinin B2 receptor abolished the response to bradykinin (IC50 of HOE 140 and NPC 16731 were 0.52+/-0.037nM and 1.67 +/- 0.41 nM, respectively). CONCLUSIONS: The present data indicate the presence of kinin B2 receptors in the 16HBE cells.  相似文献   

19.
Cystic fibrosis (CF) patients are hypersusceptible to chronic Pseudomonas aeruginosa lung infections. Cultured human airway epithelial cells expressing the delta F508 allele of the cystic fibrosis transmembrane conductance regulator (CFTR) were defective in uptake of P. aeruginosa compared with cells expressing the wild-type allele. Pseudomonas aeruginosa lipopolysaccharide (LPS)-core oligosaccharide was identified as the bacterial ligand for epithelial cell ingestion; exogenous oligosaccharide inhibited bacterial ingestion in a neonatal mouse model, resulting in increased amounts of bacteria in the lungs. CFTR may contribute to a host-defense mechanism that is important for clearance of P. aeruginosa from the respiratory tract.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号