首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Near threshold fatigue crack growth behavior of a high strength steel under different tempered conditions was investigated. The important aspect of the study is to compare the crack growth behavior in terms of the closure-free component of the threshold stress intensity range, ΔK th,eff While a systematic variation in the absolute threshold stress intensity range with yield strength was observed, the trend in the intrinsic ΔK th or ΔK th,eff exhibited a contrasting behavior. This has been explained as due to the difference in fracture modes during near threshold crack growth at different temper levels. It is shown that in a high strength and high strain hardening microstructure, yielding along crystallographic slip planes is difficult and hence it exhibited a flat transgranular fracture. In a steel with low strain hardening characteristics and relatively low strength, a tendency to crystallographic planar slip is observed consequently resulting in high ΔK th. Occurrence of a predominantly intergranular fracture is shown to reduce intrinsic ΔK th drastically and increase crack growth rates. Also shown is that crack closure can occur in high strength steels under certain fracture morphologies. A ‘transgranular planar slip’ during the inception of a ‘microstructure sensitive’ crack growth is essential to promote intergranular and faceted fracture. The occurrence of a maximum in the fraction of intergranular fracture during threshold crack growth corresponds to the ΔK value at which the cyclic plastic zone size becomes equal to the prior austenitic grain size.  相似文献   

2.
Near-threshold fatigue crack growth was studied in 8090-T8771 Al-Li alloy tested in moist laboratory air. The testing was conducted using (1) the ASTM E-647 load-shedding procedure, (2) a power-law load-shedding procedure, and (3) a constant-amplitude (CA) loading procedure. Crack closure in the three procedures was analyzed. In reconciling fatigue crack growth rates (FCGRs) with different crack closure levels under identical testing parameters, the conventional ΔK eff (=K maxK op) fails to correlate the test data and the modified ΔK eff (=K max - χKop, where χ is the shielding factor, defined by an energy approach) is proven to be the true crack driving force. A parallel slip-rupture model is proposed to describe the mechanism of near-threshold fatigue crack growth in this alloy. The model explains the mode transition from crystallographic slip band cracking (SBC) to subgrain boundary cracking (SGC)/brittle fracture (BF) in terms of a microstructure-environment synergy. The transition is related to the material’s short-transverse grain size.  相似文献   

3.
Fatigue cracking resistance of sintered steel as a function of temperature is characterized by crack growth rate vs the stress intensity range, ΔK. The stress ratio effects on fatigue crack propagation (FCP) are investigated from room temperature to 300 °C. The crack closure effects on FCP are evaluated by both theoretical and experimental approaches. We found that the crack closure cannot be fully responsible for the observed increase of fatigue resistance with low stress ratio. Experimental results support that both K max and ΔK control near-threshold crack growth. Fatigue crack resistance at high ΔK regime decreases with temperature. The apparent increase of fatigue resistance at the near-threshold regime at elevated temperatures might be attributed to microcrack toughening.  相似文献   

4.
The fatigue crack growth rates of three solid solution strengthened superalloys were measured at 25°C and from 538 to 871°C over a range of frequencies varying from 0.01 to 10.0 Hz. The three alloys were respectively nickel base, cobalt base and iron base alloys with approximately the same chromium content. The plots of crack growth ratevs AK, the range of the stress intensity factor, show three different regimes. At low ΔAK the crack growth rates are frequency independent and the fracture is strongly crystallographic. In the medium range of ΔK the fatigue crack growth rates are frequency and waveform dependent, indicating a strong creep-oxidation time dependent fracture mechanism. At high ΔK, nearK c, the growth rates are again frequency independent and fracture proceeds by a void coalescence mechanism. The correlations between the fractographic features as seen in the SEM and the measured crack growth rates provide a good basis for the understanding of fatigue crack growth at elevated temperatures in the elastic-plastic range.  相似文献   

5.
The influences of microstructure and deformation mode on inert environment intrinsic fatigue crack propagation were investigated for Al-Li-Cu-Mg alloys AA2090, AA8090, and X2095 compared to AA2024. The amount of coherent shearable δ (Al3Li) precipitates and extent of localized planar slip deformation were reduced by composition (increased Cu/Li in X2095) and heat treatment (double aging of AA8090). Intrinsic growth rates, obtained at high constantK max to minimize crack closure and in vacuum to eliminate any environmental effect, were alloy dependent;da/dN varied up to tenfold based on applied ΔK or ΔK/E. When compared based on a crack tip cyclic strain or opening displacement parameter (ΔK/(σys E)1/2), growth rates were equivalent for all alloys except X2095-T8 which exhibited unique fatigue crack growth resistance. Tortuous fatigue crack profiles and large fracture surface facets were observed for each Al-Li alloy independent of the precipitates present, particularly δ, and the localized slip deformation structure. Reduced fatigue crack propagation rates for X2095 in vacuum are not explained by either residual crack closure or slip reversibility arguments; the origin of apparent slip band facets in a homogeneous slip alloy is unclear. Better understanding of crack tip damage accumulation and fracture surface facet crystallography is required for Al-Li alloys with varying slip localization.  相似文献   

6.
High frequency (123 Hz) fatigue crack propagation studies were conducted under rising ΔK conditions (R-ratio = 0.22) on single edge notch specimens of austenitic stainless steel (type 316L) that contained an annealed precrack. Tests were conducted in near neutral (pH 5.5) solutions of 1 M NaCl and 1 M NaCl + 0.01 M Na2S2O3 under potentiostatically controlled conditions and in desiccated air. Attention was directed primarily to the near threshold behavior and the stage I (crystallographic) region of cracking. Good mixing between the crack solution and bulk solution was obtained and crack retardation and arrest effects, due to surface roughness induced closure, were minimized at high anodic potentials by electrochemical erosion. Thermodynamic considerations showed that hydrogen played no role in fatigue crack propagation. Analysis of the results in terms of the estimated effective cyclic stress intensity, ΔK eff, showed a systematic effect of potential on the average crack growth increment per cycle,da/dN. Anodic dissolution processes were considered to make an insignificant contribution toda/dN. A model was proposed for stage I fatigue cracking based on the effect of oxide nucleation rate on restricted slip reversal. The essential features of the model were considered to be relevant to cracking in aqueous environments and in desiccated air.  相似文献   

7.
Fatigue crack growth curves(Δa/ΔN =f(K max )) were measured with 2.5 mm thick sheets of electron beam welded iron base superalloy A286. Fatigue testing frequency was 21 kHz,R = −1 (mean stress zero) and the environment was noncorrosive silicone oil at 20 °C. Two series of samples with different welding conditions were tested. One series was welded perfectly, whereas the second contained microcracks within the weld and the heat affected zone. It was shown that the crack growth rate in the base metal is slower than in the weld. The threshold stress intensity factorK th of the base metal is 14 MNm-3/2 and that of the weld, 10 MNm -3/2 . However, at higherK max values, the crack grows more rapidly in the weld than in the base metal; for example, the crack growth rate is 16 times higher at Kmax = 20 MNm -3/2 . Microcracks introduced by an imperfect welding process do not influence the fatigue cracking behavior in the threshold regime; atK max = 15 MNm-3/2, however, the crack growth rates differ by an order of magnitude. Fractographic examination shows considerable differences in the fracture appearance of weld, heat affected zone, and base material. Weld and base metal display ductile fracture surfaces and the heat affected zone is characterized by crystallographic fracture facets.  相似文献   

8.
The high cycle fatigue crack growth characteristics of coarse grainedα-titanium have been studied in vacuum, air, water and brine. Tests were carried out on single-edge-notch tension test-pieces at anR ratio of 0.35, a frequency of 130 Hz, and a ΔK range of 5 to 25 MPa-√m. The use of channelling patterns in the SEM permitted detailed crystallographic information to be correlated with fatigue fracture morphologies. Three distinct modes of fatigue crack growth were identified. Cleavage-like facets on the basal planes (0002); the formation of which was encouraged by increasing severity of environment and increasing stress normal to (0002), striations on planes normal to (0002) consistent with a mechanism involving intersecting prism slip systems, and furrows in the [0001] direction associated with fine lines parallel to the 1123 direction. It is shown how the relationships between grain orientation, stress geometry and testing environment may be presented in the form of Grain Orientation Control Maps. The rate of fatigue crack growth in individual grains was dominated by the mode of growth; below a ΔK of 10 MPa√m the cleavage-like mode was up to 10 times more rapid than the other modes of growth. Formerly with the Department of Physical Metallurgy and Science of Materials, The University of Birmingham, Birmingham, United Kingdom B152TT.  相似文献   

9.
An attempt has been made to systematically investigate the effects of microstructural parameters, such as the prior austenite grain size (PAGS), in influencing the resistance to fatigue crack growth (FCG) in the near-threshold region under three different temper levels in a quenched and tempered high-strength steel. By austenitizing at various temperatures, the PAGS was varied from about 0.7 to 96 μm. The microstructures with these grain sizes were tempered at 200 °C, 400 °C, and 530 °C and tested for fatigue thresholds and crack closure. It has been found that, in general, three different trends in the dependence of both the total threshold stress intensity range, ΔK th , and the intrinsic threshold stress intensity range, ΔK eff, th , on the PAGS are observable. By considering in detail the factors such as cyclic stress-strain behavior, environmental effects on FCG, and embrittlement during tempering, the present observations could be rationalized. The strong dependence of ΔK th and ΔK eff, th on PAGS in microstructures tempered at 530 °C has been primarily attributed to cyclic softening and thereby the strong interaction of the crack tip deformation field with the grain boundary. On the other hand, a less strong dependence of ΔK th and ΔK eff, th on PAGS is suggested to be caused by the cyclic hardening behavior of lightly tempered microstructures occurring in 200 °C temper. In both microstructures, crack closure influenced near-threshold FCG (NTFCG) to a significant extent, and its magnitude was large at large grain sizes. Microstructures tempered at the intermediate temperatures failed to show a systematic variation of ΔKth and ΔKeff, th with PAGS. The mechanisms of intergranular fracture vary between grain sizes in this temper. A transition from “microstructure-sensitive” to “microstructure-insensitive” crack growth has been found to occur when the zone of cyclic deformation at the crack tip becomes more or less equal to PAGS. Detailed observations on fracture morphology and crack paths corroborate the grain size effects on fatigue thresholds and crack closure. K.S. RAVICHANDRAN, formerly Research Scholar, Department of Metallurgy, Indian Institute of Science  相似文献   

10.
The effects of crystallographic orientation on the fatigue crack growth behavior of MAR-M200* single crystals were examined. Using compact-tension specimens tested at 20 Hz, fatigue crack growth rates were determined at ambient temperature at minimum stress to maximum stress ratios,R, of 0.1 and 0.5. In most cases, subcritical crack growth occurred either along a single {111} slip plane or a combination of {111} planes. The mode of cracking was generally mixed and contained mode I, II, and III components. Considerable crack deflection and branching were also observed. Some fracture surfaces were found to contain a significant amount of asperities and, in some specimens, black debris. Based on Auger spectroscopic analyses and the fracture surface appearance, it appears that the black debris represented oxides formed due to rubbing of the fracture surfaces. Using stress intensity solutions obtained based on the Boundary-Integral-Equation technique, an effective ΔK was successfully used for correlating the crack growth rate data. The results indicate that the effect of crystallographic orientation on crack growth rate can be explained on the basis of crack deflection, branching, and roughness-induced crack closure. Formerly with Southwest Research Institute  相似文献   

11.
Microscopic fatigue crack propagation (FCP) paths in peak-aged unrecrystallized alloy 2090 are identified as functions of intrinsicda/dN- ΔK kinetics and environment. The FCP rates in longitudinal-transverse (LT)-oriented 2090 are accelerated by hydrogen-producing environments (pure water vapor, moist air, and aqueous NaCl), as defined in Part I. Subgrain boundary cracking (SGC) dominates for ΔK values where the cyclic plastic zone is sufficient to envelop subgrains. At low ΔK, when this crack tip process zone is smaller than the subgrain size, environmental FCP progresses on or near (100) or (110) planes, based on etch-pit shape. For inert environments (vacuum and He) and pure O2 with crack surface oxidation, FCP produces large facets along 111 oriented slip bands. This mode does not change with ΔK, andT 1 decorated subgrain boundaries do not affect an expectedda/dN- ΔK transition for the inert environments. Rather, the complex dependence ofda/dN on ΔK is controlled by the environmental contribution to process zone microstructure-plastic strain interactions. A hydrogen embrittlement mechanism for FCP in 2090 is supported by similar brittle crack paths for low pressure water vapor and the electrolyte, the SGC and 100/110 crystallographic cracking modes, the influence of cyclic plastic zone volume ( ΔK), and the benignancy of O2. The SGC may be due to hydrogen production and trapping atT 1 bearing sub-boundaries after process zone dislocation transport, while crystallographic cracking may be due to lattice decohesion or hydride cracking. Robert S. Piascik, formerly Graduate Student, Department of Materials Science, University of Virginia.  相似文献   

12.
Stage fatigue crack propagation in Ti-6A1-4V has been studied as a function of various fracture mechanics parameters, including the stress intensity range (ΔK) and both positive and negative ratios of the minimum to maximum stress (R). It was found that the fracture surface appearance undergoes a transition from cyclic cleavage to striations at a ΔKeff of approximately 13 MNm-3/2 (11.8 ksi√in.). It was also observed that the measured striation spacings are generally within a factor of two of the optically measured crack growth rates. Both of these results can be particularly useful for determining unknown component cyclic loadings during failure analysis. The criterion for the cyclic cleavage to striation transition is considered to be a change from primarily single to multiple slip within the individual grains at the crack tip. This occurs when the cyclic plastic zone size becomes approximately equal to the α grain size.  相似文献   

13.
The role of microstructure and environment in influencing ultra-low fatigue crack propagation rates has been investigated in 7075 aluminum alloy heat-treated to underaged, peak-aged, and overaged conditions and tested over a range of load ratios. Threshold stress intensity range, ΔK0, values were found to decrease monotonically with increasing load ratio for all three heat treatments fatigue tested in 95 pct relative humidity air, with ΔK 0 decreasing at all load ratios with increased extent of aging. Comparison of the near-threshold fatigue behavior obtained in humid air with the data forvacuo, however, showed that the presence of moisture leads to a larger reduction in ΔK0 for the underaged microstructure than the overaged condition, at all load ratios. An examination of the nature of crack morphology and scanning Auger/SIMS analyses of near-threshold fracture surfaces revealed that although the crack path in the underaged structure was highly serrated and nonlinear, crack face oxidation products were much thicker in the overaged condition. The apparent differences in slow fatigue crack growth resistance of the three aging conditions are ascribed to a complex interaction among three mechanisms: the embrittling effect of moisture resulting in conventional corrosion fatigue processes, the role of microstructure and slip mode in inducing crack deflection, and crack closure arising from a combination of environmental and microstructural contributions.  相似文献   

14.
The influence of temperature in the range of 24 to 260 °C and load ratio on the near-threshold fatigue crack growth rate behavior of a CrMoV steel was characterized. At all temperatures investigated, the threshold stress intensity range, ΔK th, for fatigue crack growth decreased with increasing load ratio. The near-threshold crack growth rates increased significantly at 149 °C when compared with the rates at room temperature. However, the crack growth rates at 260 °C were comparable to those at 149 °C. These observations are rationalized in terms of the concepts of roughness and oxide-induced crack closure. Extensive fracture surface characterization using SEM, oxide thickness measurements by Auger spectroscopy, and roughness measurements by light-section-microscopy were conducted to substantiate the explanations.  相似文献   

15.
Fatigue crack propagation ratesda/dN in binary Al alloys with 3.6 wt pct Cu and 6.3 wt pct Cu and commercial 2024 aged at 21°C were compared with 99.95+ wt pct aluminum. Omitting an anomalous region at lowΔK, the extrapolated rates for “pure” aluminum are more than 100 times greater than those in the three alloys at the same ΔK. The data for the alloys fit into a single scatter band of a factor of three. It was suggested thatda/dN varies inversely with the square of the strength of the alloy but that another parameter related to the fatigue crack propagation energy per unit area is also important. Theda/dN vs ΔK curves were determined for 3.6 wt pct Cu single crystals aged seven days at 21°C which containGP zones and two and seven days at 160°C which contain mixtures ofθ′ andθ′’. No systematic variation of (da/dN Δ with crystallographic orientation was discerned, but the naturally aged specimen had a strong orientation dependence on crack initiation. At low ΔK 21°C aged specimens gave the lowestda/dN while at high ΔK the warm aged specimens gave the lower values ofda/dN. Measurement ofda/dN vs ΔK curves were conducted on specimens of 3.6 wt pct Cu with 1 mm equiaxed grains aged for various times at 130°C, 160°C, and 190°C. All warm aged specimens experienced brittle intergranular fracture at sufficiently high ΔK. The transition ΔK where intergranular fracture first appears is inversely proportional to the aging temperature. The change of fracture mode from intra to intergranular occurs gradually over a broad range of ΔK which shifts to lower ΔK with increase in aging temperature. This research was supportd by U.S. Air Force Office of Scientific Research, Office of Aerospace REsearch, Grant No. AF-AFOSR-73-2431.  相似文献   

16.
The effects of changes in R ratio on the fatigue crack growth behavior of a Nb-10 at. pct Si composite as well as bulk Nb-1.24 at. pct Si were determined. Fatigue crack growth experiments were performed over a range of ΔK levels at R ratios of 0.1 and 0.4. Qualitative and quantitative scanning electron microscopy studies were performed to characterize the fatigue fracture features of the composites and alloys, in order to determine the factors controlling these fracture features. The results of this work indicate that increases in R ratio reduce the observed threshold stress intensities in both materials. Somewhat higher fatigue thresholds were observed in the Nb-Si (ss) compared to pure Nb in the literature. In contrast to the bulk Nb-Si (ss) alloy, which exhibited no evidence of cleavage fracture in fatigue at any R ratio or ΔK level, the Nb-Si (ss) constituent in the Nb-10 at. pct Si composite exhibited a distinct fracture mode transition from ductile tearing near threshold and low ΔK to cleavage fracture with an increase in ΔK and K max. Possible reasons for such observations are provided. This article is based on a presentation made in the symposium “Fatigue and Creep of Composite Materials” presented at the TMS Fall Meeting in Indianapolis, Indiana, September 14–18, 1997, under the auspices of the TMS/ASM Composite Materials Committee.  相似文献   

17.
The corrosion fatigue crack propagation behavior of a squeeze-cast Al-Si-Mg-Cu aluminum alloy (AC8A-T6), which had been precracked in air, was investigated at testing frequencies of 0.1, 1, 5, and 10 Hz under a stress ratio (R) of 0.1. Compact-toughness specimens were precracked about 6 mm in air prior to the corrosion fatigue test in a 3 pct saline solution. At some near-threshold conditions, these cracks propagated faster than would be predicted by the mechanical driving force. This anomalous corrosion fatigue crack growth was affected by the initial stress-intensity-factor range (ΔK i), the precracking conditions, and the testing frequency. The initial crack propagation rate was as much as one order of magnitude higher than the rate for the same conditions in air. This rapid rate was associated with preferential propagation along the interphase interface in the eutectic structure. It is believed that a chemical reaction at the crack tip and/or hydrogen-assisted cracking produced the phenomenon. Eventual retardation and complete arrest of crack growth after this initial rapid growth occurred within a short period at low ΔK values, when the testing frequency was low (0.1 and 1 Hz). This retardation was accompanied by corrosion product-induced crack closure and could be better explained by the contributory stress-intensity-factor range (ΔK cont) than by the effective stress-intensity-factor range (ΔK eff).  相似文献   

18.
A model for predicting the crack closing stress intensity factor for roughness-induced closure of fatigue cracks is developed based on a two-dimensional approach considering crack opening and closure of an idealized crack path. The model highlights the contribution of irreversible cyclic planar slip at the crack tip, and is extended to real cases describing roughness-induced crack closure as a function of fracture surface roughness parameters at low ΔK levels where planar slip prevails. The resulting equation indicates that roughness-induced crack closure depends on the maximum stress intensity factor, the standard deviation of heights as well as the standard deviation of angles of the crack profile elements, and the yield stress of the material. Comparison between the prediction of the model and experimental data of K cl for lamellar microstructures of Ti-2.5 Cu as well as TIMETAL 1100 shows good agreement.  相似文献   

19.
The influence of aqueous environments on fatigue crack propagation behavior was investigated for two types of structural steel (SB42 and HT80) in pure and 3 pct NaCl water under freely corroding conditions. In the intermediate to high ΔK region, fatigue crack propagation rates were higher in both aqueous environments and in 1 atm hydrogen than in air for both types of steel, and the acceleration effect increased power functionally with decreasing frequency from 5 to 0.0005 Hz. Such a crack growth acceleration property was explained by the mechanism of cyclically induced hydrogen embrittlement, as shown by the brittle striations formed on the fracture surfaces. On the other hand, in the lower ΔK region, both aqueous environments inversely suppressed crack growth and enhanced the threshold stress intensity factor range ΔK th just above the ΔK th in air, while only in aerated 3 pct NaCl water was the crack observed to grow even under the condition below the ΔK th in air, not showing the threshold. Probable mechanisms for such fairly complex environmental effects were also suggested.  相似文献   

20.
The effects of crystallographic orientation and stress state on the multiaxial fatigue behavior of MAR-M200* single crystals were examined. Using notched tubular specimens subjected to combined tension/torsion cyclic loads, crack growth rates were determined at ambient temperature as functions of stress intensity range, the shear stress range-to-normal stress range ratio, and crystallographic orientation. Comparison of crack growth data at the same effective ΔK reveals a weak dependence of the crack growth rate on both the tube axis and the notch orientation. For a given set of tube axis and notch orientation, the crack growth rate might or might not vary with the applied stress state, depending on whether roughness-induced crack closure is present. In most cases, subcritical cracking occurs either along a single 111 slip plane or on ridges formed with two 111 slip planes. Neither fracture mode is altered by a change in the applied stress state. This complex crack growth behavior will be discussed in terms of the crack-tip stress field, slip morphology, and crack closure. Formerly with Southwest Research Institute  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号