首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents alternative forms of hyperelastic–plastic constitutive equations and their integration algorithms for isotropic‐hardening materials at large strain, which are established in two‐point tensor field, namely between the first Piola–Kirchhoff stress tensor and deformation gradient. The eigenvalue problems for symmetric and non‐symmetric tensors are applied to kinematics of multiplicative plasticity, which imply the transformation relationships of eigenvectors in current, intermediate and initial configurations. Based on the principle of plastic maximum dissipation, the two‐point hyperelastic stress–strain relationships and the evolution equations are achieved, in which it is considered that the plastic spin vanishes for isotropic plasticity. On the computational side, the exponential algorithm is used to integrate the plastic evolution equation. The return‐mapping procedure in principal axes, with respect to logarithmic elastic strain, possesses the same structure as infinitesimal deformation theory. Then, the theory of derivatives of non‐symmetric tensor functions is applied to derive the two‐point closed‐form consistent tangent modulus, which is useful for Newton's iterative solution of boundary value problem. Finally, the numerical simulation illustrates the application of the proposed formulations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
A finite element formulation governing the geometrically non‐linear thermoelastic behaviour of plates and shells made of functionally graded materials is derived in this paper using the updated Lagrangian approach. Derivation of the formulation is based on rewriting the Green–Lagrange strain as well as the 2nd Piola–Kirchhoff stress as two second‐order functions in terms of a through‐the‐thickness parameter. Material properties are assumed to vary through the thickness according to the commonly used power law distribution of the volume fraction of the constituents. Within a non‐linear finite element analysis framework, the main focus of the paper is the proposal of a formulation to account for non‐linear stress distribution in FG plates and shells, particularly, near the inner and outer surfaces for small and large values of the grading index parameter. The non‐linear heat transfer equation is also solved for thermal distribution through the thickness by the Rayleigh–Ritz method. Advantages of the proposed approach are assessed and comparisons with available solutions are presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper a new eight‐node (brick) solid‐shell finite element formulation based on the concept of reduced integration with hourglass stabilization is presented. The work focuses on static problems. The starting point of the derivation is the three‐field variational functional upon which meanwhile established 3D enhanced strain concepts are based. Important additional assumptions are made to transfer the approach into a powerful solid‐shell. First of all, a Taylor expansion of the first Piola–Kirchhoff stress tensor with respect to the normal through the centre of the element is carried out. In this way the stress becomes a linear function of the shell surface co‐ordinates whereas the dependence on the thickness co‐ordinate remains non‐linear. Secondly, the Jacobian matrix is replaced by its value in the centre of the element. These two assumptions lead to a computationally efficient shell element which requires only two Gauss points in the thickness direction (and one Gauss point in the plane of the shell element). Additionally three internal element degrees‐of‐freedom have to be determined to avoid thickness locking. One important advantage of the element is the fact that a fully three‐dimensional stress state can be modelled without any modification of the constitutive law. The formulation has only displacement degrees‐of‐freedom and the geometry in the thickness direction is correctly displayed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper we address the extension of a recently proposed reduced integration eight‐node solid‐shell finite element to large deformations. The element requires only one integration point within the shell plane and at least two integration points over the thickness. The possibility to choose arbitrarily many Gauss points over the shell thickness enables a realistic and efficient modeling of the non‐linear material behavior. Only one enhanced degree‐of‐freedom is needed to avoid volumetric and Poisson thickness locking. One key point of the formulation is the Taylor expansion of the inverse Jacobian matrix with respect to the element center leading to a very accurate modeling of arbitrary element shapes. The transverse shear and curvature thickness locking are cured by means of the assumed natural strain concept. Further crucial points are the Taylor expansion of the compatible cartesian strain with respect to the center of the element as well as the Taylor expansion of the second Piola–Kirchhoff stress tensor with respect to the normal through the center of the element. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This paper improves the 16 degrees‐of‐freedom quadrilateral shell element based on pointwise Kirchhoff–Love constraints and introduces a consistent large strain formulation for this element. The model is based on classical shell kinematics combined with continuum constitutive laws. The resulting element is valid for large rotations and displacements. The degrees‐of‐freedom are the displacements at the corner nodes and one rotation at each mid‐side node. The formulation is free of enhancements, it is almost fully integrated and is found to be immune to locking or unstable modes. The patch test is satisfied. In addition, the formulation is simple and amenable to efficient incorporation in large‐scale codes as no internal degrees‐of‐freedom are employed, and the overall calculations are very efficient. Results are presented for linear and non‐linear problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
This paper is concerned with energy–momentum consistent time discretizations of dynamic finite viscoelasticity. Energy consistency means that the total energy is conserved or dissipated by the fully discretized system in agreement with the laws of thermodynamics. The discretization is energy–momentum consistent if also momentum maps are conserved when group motions are superimposed to deformations. The performed approximation is based on a three‐field formulation, in which the deformation field, the velocity field and a strain‐like viscous internal variable field are treated as independent quantities. The new non‐linear viscous evolution equation satisfies a non‐negative viscous dissipation not only in the continuous case, but also in the fully discretized system. The initial boundary value problem is discretized by using finite elements in space and time. Thereby, the temporal approximation is performed prior to the spatial approximation in order to preserve the stress objectivity for finite rotation increments (incremental objectivity). Although the present approach makes possible to design schemes of arbitrary order, the focus is on finite elements relying on linear Lagrange polynomials for the sake of clearness. The discrete energy–momentum consistency is based on the collocation property and an enhanced second Piola–Kirchhoff stress tensor. The obtained coupled non‐linear algebraic equations are consistently linearized. The corresponding iterative solution procedure is associated with newly proposed convergence criteria, which take the discrete energy consistency into account. The iterative solution procedure is therefore not complicated by different scalings in the independent variables, since the motion of the element is taken into account for solving the viscous evolution equation. Representative numerical simulations with various boundary conditions show the superior stability of the new time‐integration algorithm in comparison with the ordinary midpoint rule. Both the quasi‐rigid deformations during a free flight, and large deformations arising in a dynamic tensile test are considered. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This study presents an isogeometric framework for incorporating representative volume element–based multiscale models into computational homogenization. First‐order finite deformation homogenization theory is derived within the framework of the method of multiscale virtual power, and Lagrange multipliers are used to illustrate the effects of considering different kinematical constraints. Using a Lagrange multiplier approach in the numerical implementation of the discrete system naturally leads to a consolidated treatment of the commonly employed representative volume element boundary conditions. Implementation of finite deformation computational strain‐driven, stress‐driven, and mixed homogenization is detailed in the context of isogeometric analysis (IGA), and performance is compared to standard finite element analysis. As finite deformations are considered, a numerical multiscale stability analysis procedure is also detailed for use with IGA. Unique implementation aspects that arise when computational homogenization is performed using IGA are discussed, and the developed framework is applied to a complex curved microstructure representing an architectured material.  相似文献   

8.
This paper presents a computational homogenization scheme that is of particular interest for problems formulated in curvilinear coordinates. The main goal of this contribution is to generalize the computational homogenization scheme to a formulation of micro–macro transitions in curvilinear convective coordinates, where different physical spaces are considered at the homogenized macro‐continuum and at the locally attached representative micro‐structures. The deformation and the coordinate system of the micro‐structure are assumed to be coupled with the local deformation and the local coordinate system at a corresponding point of the macro‐continuum. For the consistent formulation of micro–macro transitions, the operations scale‐up and scale‐down are introduced, considering the rotated representation of tensor variables at the different physical reference frames of micro‐ and macro‐structure. The second goal of this paper is to use objective strain measures like the Green–Lagrange strain tensor for the solution of boundary value problems on the micro‐ and macro‐scale by providing the required transformations for the work‐conjugate stress, strain and tangent tensors into variables admissible for the considered micro–macro transitions and satisfying the averaging theorem. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
An assumed‐strain finite element technique is presented for shear‐deformable (Reissner–Mindlin) plates. The weighted residual method (reminiscent of the strain–displacement functional) is used to enforce weakly the balance equation with the natural boundary condition and, separately, the kinematic equation (the strain–displacement relationship). The a priori satisfaction of the kinematic weighted residual serves as a condition from which strain–displacement operators are derived via nodal integration, for linear triangles, and quadrilaterals, and also for quadratic triangles. The degrees of freedom are only the primitive variables: transverse displacements and rotations at the nodes. A straightforward constraint count can partially explain the insensitivity of the resulting finite element models to locking in the thin‐plate limit. We also construct an energy‐based argument for the ability of the present formulation to converge to the correct deflections in the limit of the thickness approaching zero. Examples are used to illustrate the performance with particular attention to the sensitivity to element shape and shear locking. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper a coupled two‐scale shell model is presented. A variational formulation and associated linearization for the coupled global–local boundary value problem is derived. For small strain problems, various numerical solutions are computed within the so‐called FE 2 method. The discretization of the shell is performed with quadrilaterals, whereas the local boundary value problems at the integration points of the shell are discretized using 8‐noded or 27‐noded brick elements or so‐called solid shell elements. At the bottom and top surface of the representative volume element stress boundary conditions are applied, whereas at the lateral surfaces the in‐plane displacements are prescribed. For the out‐of‐plane displacements link conditions are applied. The coupled nonlinear boundary value problems are simultaneously solved within a Newton iteration scheme. With an important test, the correct material matrix for the stress resultants assuming linear elasticity and a homogeneous continuum is verified.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A coupling algorithm based on Lagrange multipliers is proposed for the simulation of structure–acoustic field interaction. Finite plate elements are coupled to a Galerkin boundary element formulation of the acoustic domain. The interface pressure is interpolated as a Lagrange multiplier, thus, allowing the coupling of non‐matching grids. The resulting saddle‐point problem is solved by an approximate Uzawa‐type scheme in which the matrix–vector products of the boundary element operators are evaluated efficiently by the fast multipole boundary element method. The algorithm is demonstrated on the example of a cavity‐backed elastic panel. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract: Molecular dynamics (MD) is now playing a unique as well as conspicuous role in probing in nano‐science and technology. In this paper, MD simulation of uniaxial tension of some face‐centred cubic (FCC) metals (namely, Ag, Ni, Al and Cu) at nano‐scale was carried out. The effects of different loading rates on the stress–strain curves at a constant temperature of 300 K were studied. The potential used in these simulations was Sutton–Chen, and Velocity Verlet formulation of Noise‐Hoover dynamic was also applied to have a constant temperature ensemble. The boundary condition was periodic. Eventually, MD simulations were carried out and it was concluded that by increasing the loading rate both maximum stress and strain at failure increase. The maximum engineering stress for Al, Ag, Cu and Ni can be rounded as 4, 9, 12 and 18 GPa, respectively, for all loading rates.  相似文献   

13.
14.
This paper proposed a rotation‐free thin shell formulation with nodal integration for elastic–static, free vibration, and explicit dynamic analyses of structures using three‐node triangular cells and linear interpolation functions. The formulation is based on the classic Kirchhoff plate theory, in which only three translational displacements are treated as the filed variables. Based on each node, the integration domains are further formed, where the generalized gradient smoothing technique and Green divergence theorem that can relax the continuity requirement for trial function are used to construct the curvature filed. With the aid of strain smoothing operation and tensor transformation rule, the smoothed strains in the integration domain can be finally expressed by constants. The principle of virtual work is then used to establish the discretized system equations. The translational boundary conditions are imposed same as the practice of standard finite element method, while the rotational boundary conditions are constrained in the process of constructing the smoothed curvature filed. To test the performance of the present formulation, several numerical examples, including both benchmark problems and practical engineering cases, are studied. The results demonstrate that the present method possesses better accuracy and higher efficiency for both static and dynamic problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The hybrid‐mixed assumed natural strain four‐node quadrilateral element using the sampling surfaces (SaS) technique is developed. The SaS formulation is based on choosing inside the plate body N not equally spaced SaS parallel to the middle surface in order to introduce the displacements of these surfaces as basic plate variables. Such choice of unknowns with the consequent use of Lagrange polynomials of degree N–1 in the thickness direction permits the presentation of the plate formulation in a very compact form. The SaS are located at Chebyshev polynomial nodes that allow one to minimize uniformly the error due to the Lagrange interpolation. To avoid shear locking and have no spurious zero energy modes, the assumed natural strain concept is employed. The developed hybrid‐mixed four‐node quadrilateral plate element passes patch tests and exhibits a superior performance in the case of coarse distorted mesh configurations. It can be useful for the 3D stress analysis of thin and thick plates because the SaS formulation gives the possibility to obtain solutions with a prescribed accuracy, which asymptotically approach the 3D exact solutions of elasticity as the number of SaS tends to infinity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In the paper a non‐linear quadrilateral shell element for the analysis of thin structures is presented. The variational formulation is based on a Hu–Washizu functional with independent displacement, stress and strain fields. The interpolation matrices for the mid‐surface displacements and rotations as well as for the stress resultants and strains are specified. Restrictions on the interpolation functions concerning fulfillment of the patch test and stability are derived. The developed mixed hybrid shell element possesses the correct rank and fulfills the in‐plane and bending patch test. Using Newton's method the finite element approximation of the stationary condition is iteratively solved. Our formulation can accommodate arbitrary non‐linear material models for finite deformations. In the examples we present results for isotropic plasticity at finite rotations and small strains as well as bifurcation problems and post‐buckling response. The essential feature of the new element is the robustness in the equilibrium iterations. It allows very large load steps in comparison to other element formulations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Formulation of the scale transition equations coupling the microscopic and macroscopic variables in the second‐order computational homogenization of heterogeneous materials and the enforcement of generalized boundary conditions for the representative volume element (RVE) are considered. The proposed formulation builds on current approaches by allowing any type of RVE boundary conditions (e.g. displacement, traction, periodic) and arbitrary shapes of RVE to be applied in a unified manner. The formulation offers a useful geometric interpretation for the assumptions associated with the microstructural displacement fluctuation field within the RVE, which is here extended to second‐order computational homogenization. A unified approach to the enforcement of the boundary conditions has been undertaken using multiple constraint projection matrices. The results of an illustrative shear layer model problem indicate that the displacement and traction RVE boundary conditions provide the upper and lower bounds of the response determined via second‐order computational homogenization, and the solution associated with the periodic RVE boundary conditions lies between them. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
A new quadrilateral Reissner–Mindlin plate element with 12 element degrees of freedom is presented. For linear isotropic elasticity a Hellinger–Reissner functional with independent displacements, rotations and stress resultants is used. Within the mixed formulation the stress resultants are interpolated using five parameters for the bending moments and four parameters for the shear forces. The hybrid element stiffness matrix resulting from the stationary condition can be integrated analytically. This leads to a part obtained by one‐point integration and a stabilization matrix. The element possesses a correct rank, does not show shear locking and is applicable for the evaluation of displacements and stress resultants within the whole range of thin and thick plates. The bending patch test is fulfilled and the computed numerical examples show that the convergence behaviour is better than comparable quadrilateral assumed strain elements. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
We introduce a coupled finite and boundary element formulation for acoustic scattering analysis over thin‐shell structures. A triangular Loop subdivision surface discretisation is used for both geometry and analysis fields. The Kirchhoff‐Love shell equation is discretised with the finite element method and the Helmholtz equation for the acoustic field with the boundary element method. The use of the boundary element formulation allows the elegant handling of infinite domains and precludes the need for volumetric meshing. In the present work, the subdivision control meshes for the shell displacements and the acoustic pressures have the same resolution. The corresponding smooth subdivision basis functions have the C1 continuity property required for the Kirchhoff‐Love formulation and are highly efficient for the acoustic field computations. We verify the proposed isogeometric formulation through a closed‐form solution of acoustic scattering over a thin‐shell sphere. Furthermore, we demonstrate the ability of the proposed approach to handle complex geometries with arbitrary topology that provides an integrated isogeometric design and analysis workflow for coupled structural‐acoustic analysis of shells.  相似文献   

20.
In this work, an enhanced cell‐based smoothed finite element method (FEM) is presented for the Reissner–Mindlin plate bending analysis. The smoothed curvature computed by a boundary integral along the boundaries of smoothing cells in original smoothed FEM is reformulated, and the relationship between the original approach and the present method in curvature smoothing is established. To improve the accuracy of shear strain in a distorted mesh, we span the shear strain space over the adjacent element. This is performed by employing an edge‐based smoothing technique through a simple area‐weighted smoothing procedure on MITC4 assumed shear strain field. A three‐field variational principle is utilized to develop the mixed formulation. The resultant element formulation is further reduced to a displacement‐based formulation via an assumed strain method defined by the edge‐smoothing technique. As the result, a new formulation consisting of smoothed curvature and smoothed shear strain interpolated by the standard transverse displacement/rotation fields and smoothing operators can be shown to improve the solution accuracy in cell‐based smoothed FEM for Reissner–Mindlin plate bending analysis. Several numerical examples are presented to demonstrate the accuracy of the proposed formulation.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号