首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a robust method for generating high‐order nodal tetrahedral curved meshes. The approach consists of modifying an initial linear mesh by first, introducing high‐order nodes, second, displacing the boundary nodes to ensure that they are on the computer‐aided design surface, and third, smoothing and untangling the mesh obtained after the displacement of the boundary nodes to produce a valid curved high‐order mesh. The smoothing algorithm is based on the optimization of a regularized measure of the mesh distortion relative to the original linear mesh. This means that whenever possible, the resulting mesh preserves the geometrical features of the initial linear mesh such as shape, stretching, and size. We present several examples to illustrate the performance of the proposed algorithm. Furthermore, the examples show that the implementation of the optimization problem is robust and capable of handling situations in which the mesh before optimization contains a large number of invalid elements. We consider cases with polynomial approximations up to degree ten, large deformations of the curved boundaries, concave boundaries, and highly stretched boundary layer elements. The meshes obtained are suitable for high‐order finite element analyses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A general method for the post‐processing treatment of high‐order finite element fields is presented. The method applies to general polynomial fields, including discontinuous finite element fields. The technique uses error estimation and h‐refinement to provide an optimal visualization grid. Some filtering is added to the algorithm in order to focus the refinement on a visualization plane or on the computation of one single iso‐zero surface. 2D and 3D examples are provided that illustrate the power of the technique. In addition, schemes and algorithms that are discussed in the paper are readily available as part of an open source project that is developed by the authors, namely Gmsh. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
To evaluate the computational performance of high‐order elements, a comparison based on operation count is proposed instead of runtime comparisons. More specifically, linear versus high‐order approximations are analyzed for implicit solver under a standard set of hypotheses for the mesh and the solution. Continuous and discontinuous Galerkin methods are considered in two‐dimensional and three‐dimensional domains for simplices and parallelotopes. Moreover, both element‐wise and global operations arising from different Galerkin approaches are studied. The operation count estimates show, that for implicit solvers, high‐order methods are more efficient than linear ones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents the first method that enables the fully automatic generation of triangular meshes suitable for the so‐called non‐uniform rational B‐spline (NURBS)‐enhanced finite element method (NEFEM). The meshes generated with the proposed approach account for the computer‐aided design boundary representation of the domain given by NURBS curves. The characteristic element size is completely independent of the geometric complexity and of the presence of very small geometric features. The proposed strategy allows to circumvent the time‐consuming process of de‐featuring complex geometric models before a finite element mesh suitable for the analysis can be produced. A generalisation of the original definition of a NEFEM element is also proposed, enabling to treat more complicated elements with an edge defined by several NURBS curves or more than one edge defined by different NURBS. Three examples of increasing difficulty demonstrate the applicability of the proposed approach and illustrate the advantages compared with those of traditional finite element mesh generators. Finally, a simulation of an electromagnetic scattering problem is considered to show the applicability of the generated meshes for finite element analysis. ©2016 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.  相似文献   

5.
This paper presents a comprehensive study on the use of Irwin's crack closure integral for direct evaluation of mixed‐mode stress intensity factors (SIFs) in curved crack problems, within the extended finite element method. The approach employs high‐order enrichment functions derived from the standard Williams asymptotic solution, and SIFs are computed in closed form without any special post‐processing requirements. Linear triangular elements are used to discretize the domain, and the crack curvature within an element is represented explicitly. An improved quadrature scheme using high‐order isoparametric mapping together with a generalized Duffy transformation is proposed to integrate singular fields in tip elements with curved cracks. Furthermore, because the Williams asymptotic solution is derived for straight cracks, an appropriate definition of the angle in the enrichment functions is presented and discussed. This contribution is an important extension of our previous work on straight cracks and illustrates the applicability of the SIF extraction method to curved cracks. The performance of the method is studied on several circular and parabolic arc crack benchmark examples. With two layers of elements enriched in the vicinity of the crack tip, striking accuracy, even on relatively coarse meshes, is obtained, and the method converges to the reference SIFs for the circular arc crack problem with mesh refinement. Furthermore, while the popular interaction integral (a variant of the J‐integral method) requires special auxiliary fields for curved cracks and also needs cracks to be sufficiently apart from each other in multicracks systems, the proposed approach shows none of those limitations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents high‐order implementations of a generalized finite element method for through‐the‐thickness three‐dimensional branched cracks. This approach can accurately represent discontinuities such as triple joints in polycrystalline materials and branched cracks, independently of the background finite element mesh. Representative problems are investigated to illustrate the accuracy of the method in combination with various discretizations and refinement strategies. The combination of local refinement at crack fronts and high‐order continuous and discontinuous enrichments proves to be an excellent combination which can deliver convergence rates close to that of problems with smooth solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we examine the performance of high‐order finite element methods (FEM) for aeroacoustic propagation, based on the convected Helmholtz equation. A methodology is presented to measure the dispersion and amplitude errors of the p‐FEM, including non‐interpolating shape functions, such as ‘bubble’ shape functions. A series of simple test cases are also presented to support the results of the dispersion analysis. The main conclusion is that the properties of p‐FEM that make its strength for standard acoustics (e.g., exponential p‐convergence, low dispersion error) remain present for flow acoustics as well. However, the flow has a noticeable effect on the accuracy of the numerical solution, even when the change in wavelength due to the mean flow is accounted for, and an approximation of the dispersion error is proposed to describe the influence of the mean flow. Also discussed is the so‐called aliasing effect, which can reduce the accuracy of the solution in the case of downstream propagation. This can be avoided by an appropriate choice of mesh resolution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Two stable approximation space configurations are treated for the mixed finite element method for elliptic problems based on curved meshes. Their choices are guided by the property that, in the master element, the image of the flux space by the divergence operator coincides with the potential space. By using static condensation, the sizes of global condensed matrices, which are proportional to the dimension of border fluxes, are the same in both configurations. The meshes are composed of different topologies (tetrahedra, hexahedra, or prisms). Simulations using asymptotically affine uniform meshes, exactly fitting a spherical‐like region, and constant polynomial degree distribution k, show L2 errors of order k+1 or k+2 for the potential variable, while keeping order k+1 for the flux in both configurations. The first case corresponds to RT(k) and BDFM(k+1) spaces for hexahedral and tetrahedral meshes, respectively, but holding for prismatic elements as well. The second case, further incrementing the order of approximation of the potential variable, holds for the three element topologies. The case of hp‐adaptive meshes is considered for a problem modelling a porous media flow around a cylindrical horizontal well with elliptical drainage area. The effect of parallelism and static condensation in CPU time reduction is illustrated.  相似文献   

9.
We adopt a numerical method to solve Poisson's equation on a fixed grid with embedded boundary conditions, where we put a special focus on the accurate representation of the normal gradient on the boundary. The lack of accuracy in the gradient evaluation on the boundary is a common issue with low‐order embedded boundary methods. Whereas a direct evaluation of the gradient is preferable, one typically uses post‐processing techniques to improve the quality of the gradient. Here, we adopt a new method based on the discontinuous‐Galerkin (DG) finite element method, inspired by the recent work of [A.J. Lew and G.C. Buscaglia. A discontinuous‐Galerkin‐based immersed boundary method. International Journal for Numerical Methods in Engineering, 76:427‐454, 2008]. The method has been enhanced in two aspects: firstly, we approximate the boundary shape locally by higher‐order geometric primitives. Secondly, we employ higher‐order shape functions within intersected elements. These are derived for the various geometric features of the boundary based on analytical solutions of the underlying partial differential equation. The development includes three basic geometric features in two dimensions for the solution of Poisson's equation: a straight boundary, a circular boundary, and a boundary with a discontinuity. We demonstrate the performance of the method via analytical benchmark examples with a smooth circular boundary as well as in the presence of a singularity due to a re‐entrant corner. Results are compared to a low‐order extended finite element method as well as the DG method of [1]. We report improved accuracy of the gradient on the boundary by one order of magnitude, as well as improved convergence rates in the presence of a singular source. In principle, the method can be extended to three dimensions, more complicated boundary shapes, and other partial differential equations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A new finite element (FE) scheme is proposed for the solution of time‐dependent semi‐infinite wave‐guide problems, in dispersive or non‐dispersive media. The semi‐infinite domain is truncated via an artificial boundary ??, and a high‐order non‐reflecting boundary condition (NRBC), based on the Higdon non‐reflecting operators, is developed and applied on ??. The new NRBC does not involve any high derivatives beyond second order, but its order of accuracy is as high as one desires. It involves some parameters which are chosen automatically as a pre‐process. A C0 semi‐discrete FE formulation incorporating this NRBC is constructed for the problem in the finite domain bounded by ??. Augmented and split versions of this FE formulation are proposed. The semi‐discrete system of equations is solved by the Newmark time‐integration scheme. Numerical examples concerning dispersive waves in a semi‐infinite wave guide are used to demonstrate the performance of the new method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
In this work, we choose the points and weights of the Gauss–Jacobi, Gauss–Radau–Jacobi and Gauss–Lobatto–Jacobi quadrature rules that optimize the number of operations for the mass and stiffness matrices of the high‐order finite element method. The procedure is particularly applied to the mass and stiffness matrices using the tensor‐based nodal and modal shape functions given in (Int. J. Numer. Meth. Engng 2007; 71 (5):529–563). For square and hexahedron elements, we show that it is possible to use tensor product of the 1D mass and stiffness matrices for the Poisson and elasticity problem. For the triangular and tetrahedron elements, an analogous analysis given in (Int. J. Numer. Meth. Engng 2005; 63 (2):1530–1558) was considered for the selection of the optimal points and weights for the stiffness matrix coefficients for triangles and mass and stiffness matrices for tetrahedra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
13.
In many engineering problems, the behavior of dynamical systems depends on physical parameters. In design optimization, these parameters are determined so that an objective function is minimized. For applications in vibrations and structures, the objective function depends on the frequency response function over a given frequency range, and we optimize it in the parameter space. Because of the large size of the system, numerical optimization is expensive. In this paper, we propose the combination of Quasi‐Newton type line search optimization methods and Krylov‐Padé type algebraic model order reduction techniques to speed up numerical optimization of dynamical systems. We prove that Krylov‐Padé type model order reduction allows for fast evaluation of the objective function and its gradient, thanks to the moment matching property for both the objective function and the derivatives towards the parameters. We show that reduced models for the frequency alone lead to significant speed ups. In addition, we show that reduced models valid for both the frequency range and a line in the parameter space can further reduce the optimization time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
We present three new sets of C1 hierarchical high‐order tensor‐product bases for conforming finite elements. The first basis is a high‐order extension of the Bogner–Fox–Schmit basis. The edge and face functions are constructed using a combination of cubic Hermite and Jacobi polynomials with C1 global continuity on the common edges of elements. The second basis uses the tensor product of fifth‐order Hermite polynomials and high‐order functions and achieves global C1 continuity for meshes of quadrilaterals and C2 continuity on the element vertices. The third basis for triangles is also constructed using the tensor product of one‐dimensional functions defined in barycentric coordinates. It also has global C1 continuity on edges and C2 continuity on vertices. A patch test is applied to the three considered elements. Projection and plate problems with smooth fabricated solutions are solved, and the performance of the h‐ and p‐refinements are evaluated by comparing the approximation errors in the L2‐ and energy norms. A plate with singularity is then studied, and h‐ and p‐refinements are analysed. Finally, a transient problem with implicit time integration is considered. The results show exponential convergence rates with increasing polynomial order for the triangular and quadrilateral meshes of non‐distorted and distorted elements. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685–6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension (r + 1)D and is usually regarded as being too large when r > 1. Werder et al. found that the space‐time coupling matrices are diagonalizable over for r ?100, and this means that the time‐coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG‐in‐time methodology, for the first time, to second‐order wave equations including elastodynamics with and without Kelvin–Voigt and Maxwell–Zener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high‐order (up to degree 7) temporal and spatio‐temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease. Copyright © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.  相似文献   

16.
Advances in tetrahedral mesh generation for general, three‐dimensional domains with and without cracks are described and validated through extensive studies using a wide range of global geometries and local crack shapes. Automated methods are described for (a) implementing geometrical measures in the vicinity of the crack to identify irregularities and to improve mesh quality and (b) robust node selection on crack surfaces to ensure optimal meshing both locally and globally. The resulting numerical algorithms identify both node coincidence and also local crack surface penetration due to discretization of curved crack surfaces, providing a proven approach for removing inconsistencies. Numerical examples using the resulting 3D mesh generation program to mesh complex 3D domains containing a range of crack shapes and sizes are presented. Quantitative measures of mesh quality clearly show that the element shape and size distributions are excellent, including in regions surrounding crack fronts. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A conservative high‐order Godunov‐type scheme is presented for solving the balance laws of the 1D shallow water equations (SWE). The scheme adopts a finite element Runge–Kutta (RK) discontinuous Galerkin (DG) framework. Based on an overall third‐order accurate formulation, the model is referred to as RKDG3. Treatment of topographic source term is built in the DG approximation. Simplified formulae for initializing bed data at a discrete level are derived by assuming a local linear bed function to ease practical flow simulations. Owing to the adverse effects caused by using an uncontrolled global limiting process in an RKDG3 scheme (RKDG3‐GL), a new conservative RKDG3 scheme with user‐parameter‐free local limiting method (RKDG3‐LL) is designed to gain better accuracy and conservativeness. The advantages of the new RKDG3‐LL model are demonstrated by applying to several steady and transient benchmark flow tests with irregular (either differentiable or non‐differentiable) topography. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
High‐order central finite difference schemes encounter great difficulties in implementing complex boundary conditions. This paper introduces the matched interface and boundary (MIB) method as a novel boundary scheme to treat various general boundary conditions in arbitrarily high‐order central finite difference schemes. To attain arbitrarily high order, the MIB method accurately extends the solution beyond the boundary by repeatedly enforcing only the original set of boundary conditions. The proposed approach is extensively validated via boundary value problems, initial‐boundary value problems, eigenvalue problems, and high‐order differential equations. Successful implementations are given to not only Dirichlet, Neumann, and Robin boundary conditions, but also more general ones, such as multiple boundary conditions in high‐order differential equations and time‐dependent boundary conditions in evolution equations. Detailed stability analysis of the MIB method is carried out. The MIB method is shown to be able to deliver high‐order accuracy, while maintaining the same or similar stability conditions of the standard high‐order central difference approximations. The application of the proposed MIB method to the boundary treatment of other non‐standard high‐order methods is also considered. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The main aim of this paper is to document the performance of p‐refinement with respect to maximum principles and the nonnegative constraint. The model problem is steady‐state anisotropic diffusion with decay (which is a second‐order elliptic partial differential equation). We consider the standard single‐field formulation based on the Galerkin formalism and two least squares‐based mixed formulations. We employ Lagrange polynomials with unequal‐spaced points, and polynomials of order p = 1 to p = 10 are used. It is shown that the violation of the nonnegative constraint cannot be overcome with p‐refinement alone for anisotropic diffusion. We shall illustrate the performance of p‐refinement by using several representative problems. The intended outcomes of the paper are twofold. First, this study will caution the users of high‐order approximations about their performance with respect to maximum principles and the nonnegative constraint. Second, this study will help researchers develop new methodologies for enforcing maximum principles and the nonnegative constraint under high‐order approximations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Simultaneous shape optimization of thin‐walled curved shell structures and involved hole boundaries is studied in this paper. A novel bispace parameterization method is proposed for the first time to define global and local shape design variables both in the Cartesian coordinate system and the intrinsic coordinate system. This method has the advantage of achieving a simultaneous optimization of the global shape of the shell surface and the local shape of the openings attached automatically on the former. Inherent problems, for example, the effective parameterization of shape design variables, mapping operation between two spaces, and sensitivity analysis with respect to both kinds of design variables are highlighted. A design procedure is given to show how both kinds of design variables are managed together and how the whole design flowchart is carried out with relevant formulations. Numerical examples are presented and the effects of both kinds of design variables upon the optimal solutions are discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号