首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
    
Models encountered in computational mechanics could involve many time scales. When these time scales cannot be separated, one must solve the evolution model in the entire time interval by using the finest time step that the model implies. In some cases, the solution procedure becomes cumbersome because of the extremely large number of time steps needed for integrating the evolution model in the whole time interval. In this paper, we considered an alternative approach that lies in separating the time axis (one-dimensional in nature) in a multidimensional time space. Then, for circumventing the resulting curse of dimensionality, the proper generalized decomposition was applied allowing a fast solution with significant computing time savings with respect to a standard incremental integration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The FEM is the main tool used for structural analysis. When the design of the mechanical system involves uncertain parameters, a coupling of the FEM with reliability analysis algorithms allows to compute the failure probability of the system. However, this coupling leads to successive finite element analysis of parametric models involving high computational effort. Over the past years, model reduction techniques have been developed in order to reduce the computational requirements in the numerical simulation of complex models. The objective of this work is to propose an efficient methodology to compute the failure probability for a multi‐material elastic structure, where the Young moduli are considered as uncertain variables. A proper generalized decomposition algorithm is developed to compute the solution of parametric multi‐material model. This parametrized solution is used in conjunction with a first‐order reliability method to compute the failure probability of the structure. Applications to multilayered structures in two‐dimensional plane elasticity are presented.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The paper deals with the use of model order reduction within a posteriori error estimation procedures in the context of the finite element method. More specifically, it focuses on the constitutive relation error concept, which has been widely used over the last 40 years for FEM verification of computational mechanics models. A technical key‐point when using constitutive relation error is the construction of admissible fields, and we propose here to use the proper generalized decomposition to facilitate this task. In addition to making the implementation into commercial FE software easier, it is shown that the use of proper generalized decomposition enables to optimize the verification procedure and to get both accurate and reasonably expensive upper bounds on the discretization error. Numerical illustrations are presented to assess the performance of the proposed approach.  相似文献   

6.
利用有限元方法对瞬态热线法导热系数测量进行了数值模拟,对各种因素如加热功率、热线半径以及实验温度等对测量过程的影响进行了分析,并将模拟得到的温升曲线与实验测量得到的温升曲线进行了比较,结果表明:通过选择适当的参数值,模拟曲线可以与实测曲线吻合得很好,实验值与模拟值的偏差小于实验结果的不确定度.本结果的获得对进一步理解瞬态热线法导热系数测量过程,提高导热系数测量技术水平具有借鉴意义.  相似文献   

7.
This contribution presents a numerical strategy to evaluate the effective properties of image‐based microstructures in the case of random material properties. The method relies on three points: (1) a high‐order fictitious domain method; (2) an accurate spectral stochastic model; and (3) an efficient model‐reduction method based on the proper generalized decomposition in order to decrease the computational cost introduced by the stochastic model. A feedback procedure is proposed for an automatic estimation of the random effective properties with a given confidence. Numerical verifications highlight the convergence properties of the method for both deterministic and stochastic models. The method is finally applied to a real 3D bone microstructure where the empirical probability density function of the effective behaviour could be obtained. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
    
A high‐order generalized finite element method (GFEM) for non‐planar three‐dimensional crack surfaces is presented. Discontinuous p‐hierarchical enrichment functions are applied to strongly graded tetrahedral meshes automatically created around crack fronts. The GFEM is able to model a crack arbitrarily located within a finite element (FE) mesh and thus the proposed method allows fully automated fracture analysis using an existing FE discretization without cracks. We also propose a crack surface representation that is independent of the underlying GFEM discretization and controlled only by the physics of the problem. The representation preserves continuity of the crack surface while being able to represent non‐planar, non‐smooth, crack surfaces inside of elements of any size. The proposed representation also provides support for the implementation of accurate, robust, and computationally efficient numerical integration of the weak form over elements cut by the crack surface. Numerical simulations using the proposed GFEM show high convergence rates of extracted stress intensity factors along non‐planar curved crack fronts and the robustness of the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
    
This work deals with the question of the resolution of nonlinear problems for many different configurations in order to build a ‘virtual chart’ of solutions. The targeted problems are three‐dimensional structures driven by Chaboche‐type elastic‐viscoplastic constitutive laws. In this context, parametric analysis can lead to highly expensive computations when using a direct treatment. As an alternative, we present a technique based on the use of the time‐space proper generalized decomposition in the framework of the LATIN method. To speed up the calculations in the parametrized context, we use the fact that at each iteration of the LATIN method, an approximation over the entire time‐space domain is available. Then, a global reduced‐order basis is generated, reused and eventually enriched, by treating, one‐by‐one, all the various parameter sets. The novelty of the current paper is to develop a strategy that uses the reduced‐order basis for any new set of parameters as an initialization for the iterative procedure. The reduced‐order basis, which has been built for a set of parameters, is reused to build a first approximation of the solution for another set of parameters. An error indicator allows adding new functions to the basis only if necessary. The gain of this strategy for studying the influence of material or loading variability reaches the order of 25 in the industrial examples that are presented. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
    
A domain decomposition approach for the solution of the coupled electro‐mechanical problem in dynamics is proposed. The finite element analysis of a coupled electro‐mechanical system is frequently found, for example, in the modelling and design of microsystems and may lead to a burdensome nonlinear problem solution, particularly in the dynamic case. Two versions of the algorithm are proposed: the first one, called single‐level decomposition, exploits the natural partition of the analysis domain given by the two physics to be solved; the second one, called two‐level decomposition, adds a further subdivision of each physics into subdomains. The multilevel domain decomposition strategy here proposed is shown to accurately predict the response of microsystems subjected to electro‐mechanical coupling and to allow for a significant reduction in the computational burden. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
12.
    
The node‐based or edge‐based smoothed finite element method is extended to develop polyhedral elements that are allowed to have an arbitrary number of nodes or faces, and so retain a good geometric adaptability. The strain smoothing technique and implicit shape functions based on the linear point interpolation make the element formulation simple and straightforward. The resulting polyhedral elements are free from the excessive zero‐energy modes and yield a robust solution very much insensitive to mesh distortion. Several numerical examples within the framework of linear elasticity demonstrate the accuracy and convergence behavior. The smoothed finite element method‐based polyhedral elements in general yield solutions of better accuracy and faster convergence rate than those of the conventional finite element methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
    
In this paper, we analyse the p‐convergence of a new version of the generalized finite element method (generalized FEM or GFEM) which employs mesh‐based handbook functions which are solutions of boundary value problems in domains extracted from vertex patches of the employed mesh and are pasted into the global approximation by the partition of unity method (PUM). We show that the p‐version of our GFEM is capable of achieving very high accuracy for multiscale problems which may be impossible to solve using the standard FEM. We analyse the effect of the main factors affecting the accuracy of the method namely: (a) The data and the buffer included in the handbook domains, and (b) The accuracy of the numerical construction of the handbook functions. We illustrate the robustness of the method by employing as model problem the Laplacian in a domain with a large number of closely spaced voids. Similar robustness can be expected for problems of heat‐conduction and elasticity set in domains with a large number of closely spaced voids, cracks, inclusions, etc. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
15.
    
A robust and efficient strategy is proposed to simulate mechanical problems involving cohesive fractures. This class of problems is characterized by a global structural behavior that is strongly affected by localized nonlinearities at relatively small‐sized critical regions. The proposed approach is based on the division of a simulation into a suitable number of sub‐simulations where adaptive mesh refinement is performed only once based on refinement window(s) around crack front process zone(s). The initialization of Newton‐Raphson nonlinear iterations at the start of each sub‐simulation is accomplished by solving a linear problem based on a secant stiffness, rather than a volume mapping of nonlinear solutions between meshes. The secant stiffness is evaluated using material state information stored/read on crack surface facets which are employed to explicitly represent the geometry of the discontinuity surface independently of the volume mesh within the generalized finite element method framework. Moreover, a simplified version of the algorithm is proposed for its straightforward implementation into existing commercial software. Data transfer between sub‐simulations is not required in the simplified strategy. The computational efficiency, accuracy, and robustness of the proposed strategies are demonstrated by an application to cohesive fracture simulations in 3‐D. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
    
Efficient modal decomposition of high-dimensional turbulent flow data is an important first step for data reduction, analysis, and low-dimensional predictive modeling. The conventional modal decomposition techniques, such as proper orthogonal and dynamic mode decompositions, aim to represent the system response using spatially global basis vectors that span a broad spatial domain. A significant challenge facing approaches based on global domain decomposition is the rapid increase in both the amount of training data and the number of modes that must be retained for an accurate representation of convection dominated turbulent flows. An alternative generalized finite element (GFEM) based approach is explored for efficient representation of high-dimensional fluid flow data. Here, the standard finite element interpolation method is enriched with numerical functions that are learned from a small amount of high-fidelity training data over spatially localized subdomains. The GFEM approach is demonstrated on a 3D flow past a cylinder at Reynolds number of 100 000 and flows inside a 2D lid-driven cavity over a range of Reynolds numbers. Compared with a global proper orthogonal decomposition, the GFEM-based approach increases efficiency in reconstructing the datasets while also substantially reducing the amounts of training data.  相似文献   

17.
18.
    
This paper presents a numerical framework for the highly accurate solutions of transient heat conduction problems. The numerical framework discretizes the temporal direction of the problems by introducing the Krylov deferred correction (KDC) approach, which is arbitrarily high order of accuracy while remaining the computational complexity same as in the time-marching of first-order methods. The discretization by employing the KDC method yields a boundary value problem of the inhomogeneous modified Helmholtz equation at each time step. The meshless generalized finite difference method (GFDM) or meshless finite difference method (MFDM), a meshless method, is then applied to the solution of resulting boundary value problems at each time step. Six numerical experiments in one-, two-, and three-dimensional cases show that the proposed hybrid KDC-GFDM scheme allows big time step size for a long-time dynamic simulation and has a great potential for the problems with complex boundaries. In addition, some comparisons are also presented between the present method, the COMSOL software, and the GFDM with implicit Euler method.  相似文献   

19.
    
Proper generalized decomposition (PGD) is often used for multiquery and fast‐response simulations. It is a powerful tool alleviating the curse of dimensionality affecting multiparametric partial differential equations. Most implementations of PGD are intrusive extensions based on in‐house developed FE solvers. In this work, we propose a nonintrusive PGD scheme using off‐the‐shelf FE codes (such as certified commercial software) as an external solver. The scheme is implemented and monitored by in‐house flow‐control codes. A typical implementation is provided with downloadable codes. Moreover, a novel parametric separation strategy for the PGD resolution is presented. The parametric space is split into two‐ or three‐dimensional subspaces, to allow PGD technique solving problems with constrained parametric spaces, achieving higher convergence ratio. Numerical examples are provided. In particular, a practical example in biomechanics is included, with potential application to patient‐specific simulation.  相似文献   

20.
    
This paper demonstrates how pseudo‐transient continuation improves the efficiency and robustness of a Newton iteration within a non‐linear transient elasticity simulation. Pseudo‐transient continuation improves efficiency by enabling larger time steps than possible with a Newton iteration. Robustness improves because pseudo‐transient continuation recovers the convergence of Newton's method when the initial iterate is not within the region of local convergence. We illustrate the benefits of pseudo‐transient continuation on a non‐linear transient simulation of a buckling cylinder, including a comparison with a line search‐based Newton iteration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号