首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a new solution to accelerate the boundary integral equation method (BIEM). The calculation time of the BIEM is dominated by the evaluation of the layer potential in the boundary integral equation. We performed this task using MDGRAPE‐2, a special‐purpose computer designed for molecular dynamics simulations. MDGRAPE‐2 calculates pairwise interactions among particles (e.g. atoms and ions) using hardwired‐pipeline processors. We combined this hardware with an iterative solver. During the iteration process, MDGRAPE‐2 evaluates the layer potential. The rest of the calculation is performed on a conventional PC connected to MDGRAPE‐2. We applied this solution to the Laplace and Helmholtz equations in three dimensions. Numerical tests showed that BIEM is accelerated by a factor of 10–100. Our rather naive solution has a calculation cost of O(N2 × Niter), where N is the number of unknowns and Niter is the number of iterations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
A boundary spectral method is developed to solve acoustical problems with arbitrary boundary conditions. A formulation, originally derived by Burton and Miller, is used to overcome the non‐uniqueness problem in the high wave number range. This formulation is further modified into a globally non‐singular form to simplify the procedure of numerical quadrature when spectral methods are applied. In the present approach, generalized Fourier coefficients are determined instead of local variables at nodes as in conventional methods. The convergence of solutions is estimated through the decay of magnitude of the generalized Fourier coefficients. Several scattering and radiation problems from a sphere are demonstrated with high wave numbers in the present paper. Copyright © 1999 John Wiey & Sons, Ltd.  相似文献   

3.
This article presents a wideband fast multipole method (FMM) to accelerate the boundary integral equation method for two‐dimensional elastodynamics in frequency domain. The present wideband FMM is established by coupling the low‐frequency FMM and the high‐frequency FMM that are formulated on the ingenious decomposition of the elastodynamic fundamental solution developed by Nishimura's group. For each of the two FMMs, we estimated the approximation parameters, that is, the expansion order for the low‐frequency FMM and the quadrature order for the high‐frequency FMM according to the requested accuracy, considering the coexistence of the derivatives of the Helmholtz kernels for the longitudinal and transcendental waves in the Burton–Muller type boundary integral equation of interest. In the numerical tests, the error resulting from the fast multipole approximation was monotonically decreased as the requested accuracy level was raised. Also, the computational complexity of the present fast boundary integral equation method agreed with the theory, that is, Nlog N, where N is the number of boundary elements in a series of scattering problems. The present fast boundary integral equation method is promising for simulations of the elastic systems with subwavelength structures. As an example, the wave propagation along a waveguide fabricated in a finite‐size phononic crystal was demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Domains containing an ‘internal boundary’, such as a bi-material interface, arise in many applications, e.g. composite materials and geophysical simulations. This paper presents a symmetric Galerkin boundary integral method for this important class of problems. In this situation, the physical quantities are known to satisfy continuity conditions across the interface, but no boundary conditions are specified. The algorithm described herein achieves a symmetric matrix of reduced size. Moreover, the symmetry can also be invoked to lessen the numerical work involved in constructing the system of equations, and thus the method is computationally very efficient. A prototype numerical example, with several variations in the boundary conditions and material properties, is employed to validate the formulation and corresponding numerical procedure. The boundary element results are compared with analytical solutions and with numerical results obtained with the finite element method. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper a procedure to solve the identification inverse problems for two‐dimensional potential fields is presented. The procedure relies on a boundary integral equation (BIE) for the variations of the potential, flux, and geometry. This equation is a linearization of the regular BIE for small changes in the geometry. The aim in the identification inverse problems is to find an unknown part of the boundary of the domain, usually an internal flaw, using experimental measurements as additional information. In this paper this problem is solved without resorting to a minimization of a functional, but by an iterative algorithm which alternately solves the regular BIE and the variation BIE. The variation of the geometry of the flaw is modelled by a virtual strainfield, which allows for greater flexibility in the shape of the assumed flaw. Several numerical examples demonstrate the effectiveness and reliability of the proposed approach. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
7.
We present a high‐order hybridizable discontinuous Galerkin method for solving elliptic interface problems in which the solution and gradient are nonsmooth because of jump conditions across the interface. The hybridizable discontinuous Galerkin method is endowed with several distinct characteristics. First, they reduce the globally coupled unknowns to the approximate trace of the solution on element boundaries, thereby leading to a significant reduction in the global degrees of freedom. Second, they provide, for elliptic problems with polygonal interfaces, approximations of all the variables that converge with the optimal order of k + 1 in the L2(Ω)‐norm where k denotes the polynomial order of the approximation spaces. Third, they possess some superconvergence properties that allow the use of an inexpensive element‐by‐element postprocessing to compute a new approximate solution that converges with order k + 2. However, for elliptic problems with finite jumps in the solution across the curvilinear interface, the approximate solution and gradient do not converge optimally if the elements at the interface are isoparametric. The discrepancy between the exact geometry and the approximate triangulation near the curved interfaces results in lower order convergence. To recover the optimal convergence for the approximate solution and gradient, we propose to use superparametric elements at the interface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A dual integral formulation for the interior problem of the Laplace equation with a smooth boundary is extended to the exterior problem. Two regularized versions are proposed and compared with the interior problem. It is found that an additional free term is present in the second regularized version of the exterior problem. An analytical solution for a benchmark example in ISBE is derived by two methods, conformal mapping and the Poisson integral formula using symbolic software. The potential gradient on the boundary is calculated by using the hypersingular integral equation except on the two singular points where the potential is discontinuous instead of failure in ISBE benchmarks. Based on the matrix relations between the interior and exterior problems, the BEPO2D program for the interior problem can be easily reintegrated. This benchmark example was used to check the validity of the dual integral formulation, and the numerical results match the exact solution well.  相似文献   

9.
The paper presents the generalization of the modification of classical boundary integral equation and obtaining parametric integral equation system for 2D elastoplastic problems. The modification was made to obtain such equations for which numerical solving does not require application of finite or boundary elements. This was achieved through the use of curves and surfaces for modeling introduced at the stage of analytical modification of the classic boundary integral equation. For approximation of plastic strains the Lagrange polynomials with various number and arrangement of interpolation nodes were used. Reliability of the modification was verified on examples with analytical solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In this article, a non‐singular formulation of the boundary integral equation is developed to solve smooth and non‐smooth interior potential problems in two dimensions. The subtracting and adding‐back technique is used to regularize the singularity of Green's function and to simplify the calculation of the normal derivative of Green's function. After that, a global numerical integration is directly applied at the boundary, and those integration points are also taken as collocation points to simplify the algorithm of computation. The result indicates that this simple method gives the convergence speed of order N ?3 in the smooth boundary cases for both Dirichlet and mix‐type problems. For the non‐smooth cases, the convergence speed drops at O(N ?1/2) for the Dirichlet problems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
A new fast multipole boundary element method (BEM) is presented in this paper for large‐scale analysis of two‐dimensional (2‐D) elastostatic problems based on the direct boundary integral equation (BIE) formulation. In this new formulation, the fundamental solution for 2‐D elasticity is written in a complex form using the two complex potential functions in 2‐D elasticity. In this way, the multipole and local expansions for 2‐D elasticity BIE are directly linked to those for 2‐D potential problems. Furthermore, their translations (moment to moment, moment to local, and local to local) turn out to be exactly the same as those in the 2‐D potential case. This formulation is thus very compact and more efficient than other fast multipole approaches for 2‐D elastostatic problems using Taylor series expansions of the fundamental solution in its original form. Several numerical examples are presented to study the accuracy and efficiency of the developed fast multipole BEM formulation and code. BEM models with more than one million equations have been solved successfully on a laptop computer. These results clearly demonstrate the potential of the developed fast multipole BEM for solving large‐scale 2‐D elastostatic problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
We consider the efficient numerical solution of the three‐dimensional wave equation with Neumann boundary conditions via time‐domain boundary integral equations. A space‐time Galerkin method with C‐smooth, compactly supported basis functions in time and piecewise polynomial basis functions in space is employed. We discuss the structure of the system matrix and its efficient parallel assembly. Different preconditioning strategies for the solution of the arising systems with block Hessenberg matrices are proposed and investigated numerically. Furthermore, a C++ implementation parallelized by OpenMP and MPI in shared and distributed memory, respectively, is presented. The code is part of the boundary element library BEM4I. Results of numerical experiments including convergence and scalability tests up to a thousand cores on a cluster are provided. The presented implementation shows good parallel scalability of the system matrix assembly. Moreover, the proposed algebraic preconditioner in combination with the FGMRES solver leads to a significant reduction of the computational time. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This work presents a multi‐domain decomposition integral equation method for the numerical solution of domain dominant problems, for which it is known that the standard Boundary Element Method (BEM) is in disadvantage in comparison with classical domain schemes, such as Finite Difference (FDM) and Finite Element (FEM) methods. As in the recently developed Green Element Method (GEM), in the present approach the original domain is divided into several subdomains. In each of them the corresponding Green's integral representational formula is applied, and on the interfaces of the adjacent subregions the full matching conditions are imposed. In contrast with the GEM, where in each subregion the domain integrals are computed by the use of cell integration, here those integrals are transformed into surface integrals at the contour of each subregion via the Dual Reciprocity Method (DRM), using some of the most efficient radial basis functions known in the literature on mathematical interpolation. In the numerical examples presented in the paper, the contour elements are defined in terms of isoparametric linear elements, for which the analytical integrations of the kernels of the integral representation formula are known. As in the FEM and GEM the obtained global matrix system possesses a banded structure. However in contrast with these two methods (GEM and non‐Hermitian FEM), here one is able to solve the system for the complete internal nodal variables, i.e. the field variables and their derivatives, without any additional interpolation. Finally, some examples showing the accuracy, the efficiency, and the flexibility of the method for the solution of the linear and non‐linear convection–diffusion equation are presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
The purpose of this work is to demonstrate the application of the self‐regular formulation strategy using Green's identity (potential‐BIE) and its gradient form (flux‐BIE) for Laplace's equation. Self‐regular formulations lead to highly effective BEM algorithms that utilize standard conforming boundary elements and low‐order Gaussian integrations. Both formulations are discussed and implemented for two‐dimensional potential problems, and numerical results are presented. Potential results show that the use of quartic interpolations is required for the flux‐BIE to show comparable accuracy to the potential‐BIE using quadratic interpolations. On the other hand, flux error results in the potential‐BIE implementation can be dominated by the numerical integration of the logarithmic kernel of the remaining weakly singular integral. Accuracy of these flux results does not improve beyond a certain level when using standard quadrature together with a special transformation, but when an alternative logarithmic quadrature scheme is used these errors are shown to reduce abruptly, and the flux results converge monotonically to the exact answer. In the flux‐BIE implementation, where all integrals are regularized, flux results accuracy improves systematically, even with some oscillations, when refining the mesh or increasing the order of the interpolating function. The flux‐BIE approach presents a great numerical sensitivity to the mesh generation scheme and refinement. Accurate results for the potential and the flux were obtained for coarse‐graded meshes in which the rate of change of the tangential derivative of the potential was better approximated. This numerical sensitivity and the need for graded meshes were not found in the elasticity problem for which self‐regular formulations have also been developed using a similar approach. Logarithmic quadrature to evaluate the weakly singular integral is implemented in the self‐regular potential‐BIE, showing that the magnitude of the error is dependent only on the standard Gauss integration of the regularized integral, but not on this logarithmic quadrature of the weakly singular integral. The self‐regular potential‐BIE is compared with the standard (CPV) formulation, showing the equivalence between these formulations. The self‐regular BIE formulations and computational algorithms are established as robust alternatives to singular BIE formulations for potential problems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Based on the interpolation technique with the aid of boundary integral equations, a new differential quadrature method has been developed (boundary integral equation supported differential quadrature method, BIE-DQM) to solve boundary value problems over generally irregular geometries. The quadrature rule of the BIE-DQM is that the first and the second derivatives of a function with respect to independent variables are approximated by a weighted linear combination of the function values at all discrete nodal points and the corresponding normal derivatives at all boundary points. Several numerical examples are considered to verify the feasibility and effectiveness of the proposed algorithm.  相似文献   

16.
The solution of a Dirichlet boundary value problem of plane isotropic elasticity by the boundary integral equation (BIE) of the first kind obtained from the Somigliana identity is considered. The logarithmic function appearing in the integral kernel leads to the possibility of this operator being non-invertible, the solution of the BIE either being non-unique or not existing. Such a situation occurs if the size of the boundary coincides with the so-called critical (or degenerate) scale for a certain form of the fundamental solution used. Techniques for the evaluation of these critical scales and for the removal of the non-uniqueness appearing in the problems with critical scales solved by the BIE of the first kind are proposed and analysed, and some recommendations for BEM code programmers based on the analysis presented are given.  相似文献   

17.
The paper examines the problem of a penny-shaped crack which is formed by the development of a crack in both the fibre and the matrix of a composite consisting of an isolated elastic fibre located in an elastic matrix of infinite extent. The composite region is subjected to a uniform strain field in the direction of the fibre. The paper presents two integral-equation based approaches for the analysis of the problem. The first approach considers the formulation of the complete integral equations governing the associated elasticity problem for a two material region. The second approach considers the boundary integral equation formulation of the problem. Both methods entail the numerical solution of the governing integral equations. The solutions to these integral equations are used to evaluate the stress intensity factor at the boundary of the penny-shaped crack.  相似文献   

18.
We propose a robust immersed finite element method in which an integral equation formulation is used to enforce essential boundary conditions. The solution of a boundary value problem is expressed as the superposition of a finite element solution and an integral equation solution. For computing the finite element solution, the physical domain is embedded into a slightly larger Cartesian (box‐shaped) domain and is discretized using a block‐structured mesh. The defect in the essential boundary conditions, which occurs along the physical domain boundaries, is subsequently corrected with an integral equation method. In order to facilitate the mapping between the finite element and integral equation solutions, the physical domain boundary is represented with a signed distance function on the block‐structured mesh. As a result, only a boundary mesh of the physical domain is necessary and no domain mesh needs to be generated, except for the non‐boundary‐conforming block‐structured mesh. The overall approach is first presented for the Poisson equation and then generalized to incompressible viscous flow equations. As an example of fluid–structure coupling, the settling of a heavy rigid particle in a closed tank is considered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A new local boundary integral equation (LBIE) method for solving two dimensional transient elastodynamic problems is proposed. The method utilizes, for its meshless implementation, nodal points spread over the analyzed domain and employs the moving least squares (MLS) approximation for the interpolation of the interior and boundary variables. On the global boundary, displacements and tractions are treated as independent variables. The local integral representation of displacements at each nodal point contains both surface and volume integrals, since it employs the simple elastostatic fundamental solution and considers the acceleration term as a body force. On the local boundaries, tractions are avoided with the aid of the elastostatic companion solution. The collocation of the local boundary/volume integral equations at all the interior and boundary nodes leads to a final system of ordinary differential equations, which is solved stepwise by the -Wilson finite difference scheme. Direct numerical techniques for the accurate evaluation of both surface and volume integrals are employed and presented in detail. All the strongly singular integrals are computed directly through highly accurate integration techniques. Three representative numerical examples that demonstrate the accuracy of the proposed methodology are provided.  相似文献   

20.
In this paper we consider Dirichlet or Neumann wave propagation problems reformulated in terms of boundary integral equations with retarded potential. Starting from a natural energy identity, a space–time weak formulation for 1D integral problems is briefly introduced, and continuity and coerciveness properties of the related bilinear form are proved. Then, a theoretical analysis of an extension of the introduced formulation for 2D problems is proposed, pointing out the novelty with respect to existing literature results. At last, various numerical simulations will be presented and discussed, showing unconditional stability of the space–time Galerkin boundary element method applied to the energetic weak problem. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号