首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a meshless method for the modeling of shell‐type structures in fast dynamics. The model is based on the Mindlin–Reissner theory and takes into account material and geometric nonlinearities. The phenomena that occur prior to rupture are dealt with using damage laws, while the rupture itself is represented through the introduction of sharp discontinuities. The method does not represent cracks explicitly, which makes the treatment of multicracking easier. The time discretization is carried out in the framework of explicit dynamics, and the spatial discretization is handled through the smoothed particles hydrodynamics method and the use of moving least square functions. The capabilities of the method are demonstrated using cracking, puncturing and fragmentation examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Probabilistic theories aim at describing the properties of systems subjected to random excitations by means of statistical characteristics such as the probability density function ψ (pdf). The time evolution of the pdf of the response of a randomly excited deterministic system is commonly described with the transient Fokker–Planck–Kolmogorov (FPK) equation. The FPK equation is a conservation equation of a hypothetical or abstract fluid, which models the transport of probability. This paper presents a generalized formalism for the resolution of the transient FPK equation by using the well‐known mesh‐free Lagrangian method, smoothed particle hydrodynamics). Numerical implementation shows notable advantages of this method in an unbounded state space: (1) the conservation of total probability in the state space is explicitly written; (2) no artifact is required to manage far‐field boundary conditions; (3) the positivity of the pdf is ensured; and (4) the extension to higher dimensions is straightforward. Furthermore, thanks to the moving particles, this method is adapted for a large kind of initial conditions, even slightly dispersed distributions. The FPK equation is solved without any a priori knowledge of the stationary distribution, just a precise representation of the initial distribution is required.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a general method for dynamic particle refinement in smoothed particle hydrodynamics (SPH). Candidate particles are split into several ‘daughter’ particles according to a given refinement pattern centred about the original particle. Through the solution of a non‐linear minimization problem the optimal mass distribution of the daughter particles is obtained so as to reduce the errors introduced to the underlying density field. This procedure necessarily conserves the mass of the system. Conservation of energy and momentum results are also discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
针对一阶Godunov格式的SPH方法的计算精度和激波分辨率不高的问题,提出了二阶Godunov格式的SPH方法。新方法在求解相互作用的粒子间黎曼问题时,认为粒子内物理量呈线性分布,用线性插值后求得的值作为黎曼问题的初始值,然后把黎曼解和Taylor展开引入到SPH方法中。应用新方法对一维弹塑性应力波的传播进行了数值模拟,并与一阶Godunov格式的SPH方法进行比较.计算结果显示新方法有效地提高了计算精度和激波分辨率,同时验证了它的稳定性。  相似文献   

5.
In this paper, we propose a Galerkin‐based smoothed particle hydrodynamics (SPH) formulation with moving least‐squares meshless approximation, applied to free surface flows. The Galerkin scheme provides a clear framework to analyse several procedures widely used in the classical SPH literature, suggesting that some of them should be reformulated in order to develop consistent algorithms. The performance of the methodology proposed is tested through various dynamic simulations, demonstrating the attractive ability of particle methods to handle severe distortions and complex phenomena. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents an alternative topology optimization method based on an efficient meshless smoothed particle hydrodynamics (SPH) algorithm. To currently calculate the objective compliance, the deficiencies in standard SPH method are eliminated by introducing corrective smoothed particle method and total Lagrangian formulation. The compliance is established relative to a designed density variable at each SPH particle which is updated by optimality criteria method. Topology optimization is realized by minimizing the compliance using a modified solid isotropic material with penalization approach. Some numerical examples of plane elastic structure are carried out and the results demonstrate the suitability and effectiveness of the proposed SPH method in the topology optimization problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Smooth particle hydrodynamics (SPH) is a robust and conceptually simple method which suffers from unsatisfactory performance due to lack of consistency. The kernel function can be corrected to enforce the consistency conditions and improve the accuracy. For simplicity in this paper the SPH method with the corrected kernel is referred to as corrected smooth particle hydrodynamics (CSPH). The numerical solutions of CSPH can be further improved by introducing an integration correction which also enables the method to pass patch tests. It is also shown that the nodal integration of this corrected SPH method suffers from spurious singular modes. This spatial instability results from under integration of the weak form, and it is treated by a least‐squares stabilization procedure which is discussed in detail in Section 4. The effects of the stabilization and improvement in the accuracy are illustrated via examples. Further, the application of CSPH method to metal‐forming simulations is discussed by formulating the governing equation associated with the process. Finally, the numerical examples showing the effectiveness of the method in simulating metal‐forming problems are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
We propose a new method to obtain contact forces under a non‐smoothed contact problem between arbitrarily‐shaped bodies which are discretized by finite element method. Contact forces are calculated by the specific contact algorithm between two particles of smoothed particle hydrodynamics, which is a meshfree method, and that are applied to each colliding body. This approach has advantages that accurate contact forces can be obtained within an accelerated collision without a jump problem in a discrete time increment. Also, this can be simply applied into any contact problems like a point‐to‐point, a point‐to‐line, and a point‐to‐surface contact for complex shaped and deformable bodies. In order to describe this method, an impulse based method, a unilateral contact method and smoothed particle hydrodynamics method are firstly introduced in this paper. Then, a procedure about the proposed method is handled in great detail. Finally, accuracy of the proposed method is verified by a conservation of momentum through three contact examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In multicomponent fluid flow simulations using smoothed particle hydrodynamics, the Lagrangian particles used are mostly of equal mass. This is preferred over multimass particle setup (particles with different values of mass), as it resolves the fluid interfaces comparatively better. But the flip side of using uniform mass particle setup is that it may not be computationally economical in situations with large‐density ratios. Hence, using multimass particle setup is both economical and perhaps inevitable. An attractive feature of multimass particle setup is that it allows uniform resolution in regions with different values of density. To take advantage of the multimass setup, it is therefore imperative to reduce the error associated with its usage. In this work, we present suitable multimass correction terms and assess its effectiveness using the ?h–smooth particle hydrodynamics scheme. Standard benchmark problems, viz, shock tube test, triple‐point shock test, Rayleigh‐Taylor instability, and Kelvin‐Helmholtz instability were solved with multimass particle setup, where significant improvements could be achieved in resolving the associated contact discontinuities.  相似文献   

10.
This paper presents a Smoothed Particle Hydrodynamics (SPH) solution for the Kelvin–Helmholtz Instability (KHI) problem of an incompressible two‐phase immiscible fluid in a stratified inviscid shear flow with interfacial tension. The time‐dependent evolution of the two‐fluid interface over a wide range of Richardson number (Ri) and for three different density ratios is numerically investigated. The simulation results are compared with analytical solutions in the linear regime. Having captured the physics behind KHI, the effects of gravity and surface tension on a two‐dimensional shear layer are examined independently and together. It is shown that the growth rate of the KHI is mainly controlled by the value of the Ri number, not by the nature of the stabilizing forces. It was observed that the SPH method requires a Richardson number lower than unity (i.e. Ri?0.8) for the onset of KHI, and that the artificial viscosity plays a significant role in obtaining physically correct simulation results that are in agreement with analytical solutions. The numerical algorithm presented in this work can easily handle two‐phase fluid flow with various density ratios. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The paper discusses the problem of tension instability of particle‐based methods such as smooth particle hydrodynamics (SPH) or corrected SPH (CSPH). It is shown that tension instability is a property of a continuum where the stress tensor is isotropic and the value of the pressure is a function of the density or volume ratio. The paper will show that, for this material model, the non‐linear continuum equations fail to satisfy the stability condition in the presence of tension. Consequently, any discretization of this continuum will result in negative eigenvalues in the tangent stiffness matrix that will lead to instabilities in the time integration process. An important exception is the 1‐D case where the continuum becomes stable but SPH or CSPH can still exhibit negative eigenvalues. The paper will show that these negative eigenvalues can be eliminated if a Lagrangian formulation is used whereby all derivatives are referred to a fixed reference configuration. The resulting formulation maintains the momentum preservation properties of its Eulerian equivalent. Finally a simple 1‐D wave propagation example will be used to demonstrate that a stable solution can be obtained using Lagrangian CSPH without the need for any artificial viscosity. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
The dual particle dynamic (DPD) methods which employ two sets of particles have been demonstrated to have better accuracy and stability than the co‐locational particle methods, such as the smooth particle hydrodynamics (SPH). The hybrid particle method (HPM) is an extension of the DPD method. Besides the advantages of the DPD method, the HPM possesses features which better facilitate the simulation of large deformations. This paper presents the continued development of the HPM for the numerical solution of two‐dimensional frictionless contact problems. The interface contact force algorithm which employs a modified kinematic constraints method is used to determine the contact tractions. In this method, both the impenetrability condition and the traction condition are simultaneously enforced. In the original kinematic constraints method, only the former condition is satisfied. A new formulation to find stress derivatives at stress‐free corners by imposing stress‐free boundary conditions is also developed. The results for 1‐D and 2‐D contact problems indicate good accuracy for the contact formulation as well as the corner treatment when compared to analytical solutions and explicit finite element results using the commercial code LS‐DYNA. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
This paper addresses the issue of a p‐adaptive version of the generalized finite element method (GFEM). The technique adopted here is the equilibrated element residual method, but presented under the GFEM approach, i.e., by taking into account the typical nodal enrichment scheme of the method. Such scheme consists of multiplying the partition of unity functions by a set of enrichment functions. These functions, in the case of the element residual method are monomials, and can be used to build the polynomial space, one degree higher than the one of the solution, in which the error functions is approximated. Global and local measures are defined and used as error estimator and indicators, respectively. The error indicators, calculated on the element patches that surrounds each node, are used to control a refinement procedure. Numerical examples in plane elasticity are presented, outlining in particular the effectivity index of the error estimator proposed. Finally, the ‐adaptive procedure is described and its good performance is illustrated by the last numerical example. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a numerical study on the simulation of impacts of projectiles on fluid-filled containers. The type of impact investigated leads to hydrodynamic ram (HRAM) and complete failure of the container shell. Two different numerical approaches are compared which are both implemented in a research hydrocode: a pure Lagrangian discretization with Finite Elements (FE) and element erosion, and a coupled adaptive FE/SPH discretization. The numerical results are compared with two reference experiments. The principal phenomenology including the container deformation could be modeled well with both methods. The coupled FE/SPH approach was superior in the reproduction of the projectile’s observed residual velocity, it is, however, computationally more expensive.  相似文献   

15.
Numerical simulation of large deformation and failure problems present a series of difficulties when solved using mesh based methods. Meshless methods present an interesting alternative that has been explored in the past years by researchers. Here we propose a Runge–Kutta Taylor SPH model based on formulating the dynamic problem as a set of first‐order PDEs. Two sets of nodes are used for time steps n and n + 1 ∕ 2, resulting on avoiding the classical tensile instability of some other SPH formulations. To improve the accuracy and stability of the algorithm, the Taylor expansion in time of the advective terms is combined with a Runge–Kutta integration of the sources. Finally, as boundaries change during the process, a free surface detection algorithm is introduced. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The Smooth‐Particle‐Hydrodynamics (SPH) method is derived in a novel manner by means of a Galerkin approximation applied to the Lagrangian equations of continuum mechanics as in the finite‐element method. This derivation is modified to replace the SPH interpolant with the Moving‐Least‐Squares (MLS) interpolant of Lancaster and Saulkaskas, and define a new particle volume which ensures thermodynamic compatibility. A variable‐rank modification of the MLS interpolants which retains their desirable summation properties is introduced to remove the singularities that occur when divergent flow reduces the number of neighbours of a particle to less than the minimum required. A surprise benefit of the Galerkin SPH derivation is a theoretical justification of a common ad hoc technique for variable‐h SPH. The new MLSPH method is conservative if an anti‐symmetric quadrature rule for the stiffness matrix elements can be supplied. In this paper, a simple one‐point collocation rule is used to retain similarity with SPH, leading to a non‐conservative method. Several examples document how MLSPH renders dramatic improvements due to the linear consistency of its gradients on three canonical difficulties of the SPH method: spurious boundary effects, erroneous rates of strain and rotation and tension instability. Two of these examples are non‐linear Lagrangian patch tests with analytic solutions with which MLSPH agrees almost exactly. The examples also show that MLSPH is not absolutely stable if the problems are run to very long times. A linear stability analysis explains both why it is more stable than SPH and not yet absolutely stable and an argument is made that for realistic dynamic problems MLSPH is stable enough. The notion of coherent particles, for which the numerical stability is identical to the physical stability, is introduced. The new method is easily retrofitted into a generic SPH code and some observations on performance are made. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
A modification to the smoothed particle hydrodynamics method is proposed that improves the accuracy of the approximation especially at points near the boundary of the domain. The modified method is used to study one-dimensional wave propagation and two-dimensional transient heat conduction problems.This work was supported by the ONR grant N00014-98-1-0300 and the ARO grant DAAD19-01-1-0657 to Virginia Polytechnic Institute and State University, and the AFOSR MURI grant to Georgia Tech that awarded a subcontract to Virginia Polytechnic Institute and State University. Opinions expressed in the paper are those of authors and not of the funding agencies.  相似文献   

18.
Previous work by the author has shown that the consistency of the SPH method can be improved to acceptable levels by substituting MLS interpolants for SPH interpolants, that the SPH inconsistency drives the tension instability and that imposition of consistency via MLS severely retards tension instability growth. The new method however was not conservative, and made no provision for boundary conditions. Conservation is an essential property in simulations where large localized mass, momentum or energy transfer occurs such as high‐velocity impact or explosion modeling. A new locally conservative MLS variant of SPH that naturally incorporates realistic boundary conditions is described. In order to provide for the boundary fluxes one must identify the boundary particles. A new, purely geometric boundary detection technique for assemblies of spherical particles is described. A comparison with SPH on a ball‐and‐plate impact simulation shows qualitative improvement. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
We discuss the symmetric smoothed particle hydrodynamics (SSPH) method for generating basis functions for a meshless method. It admits a larger class of kernel functions than some other methods, including the smoothed particle hydrodynamics (SPH), the modified smoothed particle hydrodynamics (MSPH), the reproducing kernel particle method (RKPM), and the moving least squares (MLS) methods. For finding kernel estimates of derivatives of a function, the SSPH method does not use derivatives of the kernel function while other methods do, instead the SSPH method uses basis functions different from those employed to approximate the function. It is shown that the SSPH method and the RKPM give the same value of the kernel estimate of a function but give different values of kernel estimates of derivatives of the function. Results computed for a sine function defined on a one-dimensional domain reveal that the L 2, the H 1 and the H 2 error norms of the kernel estimates of a function computed with the SSPH method are less than those found with the MSPH method. Whereas the L 2 and the H 2 norms of the error in the estimates computed with the SSPH method are less than those with the RKPM, the H 1 norm of the error in the RKPM estimate is slightly less than that found with the SSPH method. The error norms for a sample problem computed with six kernel functions show that their rates of convergence with an increase in the number of uniformly distributed particles are the same and their magnitudes are determined by two coefficients related to the decay rate of the kernel function. The revised super Gauss function has the smallest error norm and is recommended as a kernel function in the SSPH method. We use the revised super Gauss kernel function to find the displacement field in a linear elastic rectangular plate with a circular hole at its centroid and subjected to tensile loads on two opposite edges. Results given by the SSPH and the MSPH methods agree very well with the analytic solution of the problem. However, results computed with the SSPH method have smaller error norms than those obtained from the MSPH method indicating that the former will give a better solution than the latter. The SSPH method is also applied to study wave propagation in a linear elastic bar.  相似文献   

20.
Stress‐point integration provides significant reductions in the computational effort of mesh‐free Galerkin methods by using fewer integration points, and thus facilitates the use of mesh‐free methods in applications where full integration would be prohibitively expensive. The influence of stress‐point integration on the convergence and stability properties of mesh‐free methods is studied. It is shown by numerical examples that for regular nodal arrangements, good rates of convergence can be achieved. For non‐uniform nodal arrangements, stress‐point integration is associated with a mild instability which is manifested by small oscillations. Addition of stabilization improves the rates of convergence significantly. The stability properties are investigated by an eigenvalue study of the Laplace operator. It is found that the eigenvalues of the stress‐point quadrature models are between those of full integration and nodal integration. Stabilized stress‐point integration is proposed in order to improve convergence and stability properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号