首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An adaptively stabilized monolithic finite element model is proposed to simulate the fully coupled thermo‐hydro‐mechanical behavior of porous media undergoing large deformation. We first formulate a finite‐deformation thermo‐hydro‐mechanics field theory for non‐isothermal porous media. Projection‐based stabilization procedure is derived to eliminate spurious pore pressure and temperature modes due to the lack of the two‐fold inf‐sup condition of the equal‐order finite element. To avoid volumetric locking due to the incompressibility of solid skeleton, we introduce a modified assumed deformation gradient in the formulation for non‐isothermal porous solids. Finally, numerical examples are given to demonstrate the versatility and efficiency of this thermo‐hydro‐mechanical model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a multiscale finite element framework is developed based on the first‐order homogenization method for fully coupled saturated porous media using an extension of the Hill‐Mandel theory in the presence of microdynamic effects. The multiscale method is employed for the consolidation problem of a 2‐dimensional saturated soil medium generated from the periodic arrangement of circular particles embedded in a square matrix, which is compared with the direct numerical simulation method. The effects of various issues, including the boundary conditions, size effects, particle arrangements, and the integral domain constraints for the microscale boundary value problem, are numerically investigated to illustrate the performance of a representative volume element in the proposed computational homogenization method of fully coupled saturated porous media. This study is aimed to clarify the effect of scale separation and size dependence, and to introduce characteristics of a proper representative volume element in multiscale modeling of saturated porous media.  相似文献   

3.
Despite the wide use of copper alloys in thermo‐mechanical applications, there is little data on their cyclic plasticity behaviour, particularly for CuAg alloys. This prevents the behaviour of the materials from being correctly described in numerical simulations for design purposes. In this work CuAg0.1 alloy used for thermo‐mechanical applications was tested by strain‐controlled cyclic loading at 3 different temperatures (room temperature, 250°C, 300°C). In each test, stress‐strain cycles were recorded until the alloy had completely stabilised. These cycles were then used to identify material parameters of non‐linear kinematic and isotropic models. The focus was on plasticity models (Armstrong‐Frederick, Chaboche, Voce) that are usually implemented in commercial finite element codes. Simulated cyclic responses with the identified material models were compared with experiments and showed a good agreement. The identified material parameters for the CuAg alloy under investigation can be used directly in finite element models for cyclic plasticity simulations, thus enabling a durability analysis of components under thermo‐mechanical loads to be performed, particularly in the field of steel‐making plants.  相似文献   

4.
A mixed finite element for coupled thermo‐hydro‐mechanical (THM) analysis in unsaturated porous media is proposed. Displacements, strains, the net stresses for the solid phase; pressures, pressure gradients, Darcy velocities for pore water and pore air phases; temperature, temperature gradients, the total heat flux are interpolated as independent variables. The weak form of the governing equations of coupled THM problems in porous media within the element is given on the basis of the Hu–Washizu three‐filed variational principle. The proposed mixed finite element formulation is derived. The non‐linear version of the element formulation is further derived with particular consideration of the THM constitutive model for unsaturated porous media based on the CAP model. The return mapping algorithm for the integration of the rate constitutive equation, the consistent elasto‐plastic tangent modulus matrix and the element tangent stiffness matrix are developed. For geometrical non‐linearity, the co‐rotational formulation approach is utilized. Numerical results demonstrate the capability and the performance of the proposed element in modelling progressive failure characterized by strain localization and the softening behaviours caused by thermal and chemical effects. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
6.
In nano‐structures, the influence of surface effects on the properties of material is highly important because the ratio of surface to volume at the nano‐scale level is much higher than that of the macro‐scale level. In this paper, a novel temperature‐dependent multi‐scale model is presented based on the modified boundary Cauchy‐Born (MBCB) technique to model the surface, edge, and corner effects in nano‐scale materials. The Lagrangian finite element formulation is incorporated into the heat transfer analysis to develop the thermo‐mechanical finite element model. The temperature‐related Cauchy‐Born hypothesis is implemented by using the Helmholtz free energy to evaluate the temperature effect in the atomistic level. The thermo‐mechanical multi‐scale model is applied to determine the temperature related characteristics at the nano‐scale level. The first and second derivatives of free energy density are computed using the first Piola‐Kirchhoff stress and tangential stiffness tensor at the macro‐scale level. The concept of MBCB is introduced to capture the surface, edge, and corner effects. The salient point of MBCB model is the definition of radial quadrature used at the surface, edge, and corner elements as an indicator of material behavior. The characteristics of quadrature are derived by interpolating the data from the atomic level laid in a circular support around the quadrature in a least‐square approach. Finally, numerical examples are modeled using the proposed computational algorithm, and the results are compared with the fully atomistic model to illustrate the performance of MBCB multi‐scale model in the thermo‐mechanical analysis of metallic nano‐scale devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A computational framework is presented to evaluate the shape as well as non‐shape (parameter) sensitivity of finite thermo‐inelastic deformations using the continuum sensitivity method (CSM). Weak sensitivity equations are developed for the large thermo‐mechanical deformation of hyperelastic thermo‐viscoplastic materials that are consistent with the kinematic, constitutive, contact and thermal analyses used in the solution of the direct deformation problem. The sensitivities are defined in a rigorous sense and the sensitivity analysis is performed in an infinite‐dimensional continuum framework. The effects of perturbation in the preform, die surface, or other process parameters are carefully considered in the CSM development for the computation of the die temperature sensitivity fields. The direct deformation and sensitivity deformation problems are solved using the finite element method. The results of the continuum sensitivity analysis are validated extensively by a comparison with those obtained by finite difference approximations (i.e. using the solution of a deformation problem with perturbed design variables). The effectiveness of the method is demonstrated with a number of applications in the design optimization of metal forming processes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Extended multiscale finite element method (EMsFEM) has been proved to be an efficient method for the mechanical analysis of heterogeneous materials. The key factor for efficiency and accuracy of EMsFEM is the numerical base functions (NBFs). The paper summarizes the general method for constructing NBFs and proposes a generalized isoparametric interpolation based on the rigid displacement properties (RDPs) of NBFs. We prove that the NBFs constructed by linear, periodic and rotational angle boundary conditions satisfy the RDPs, which is independent with the shape and material properties of unit cells. The properties of NBFs for oversampling technique are also comprehensively discussed. The algorithm complexity is discussed in theoretical and numerical aspects, which concludes that the computation quantity of EMsFEM is much smaller than the direct solutions. The algorithm is validated by linear analysis of the materials with random impurities and holes and the efficiency is improved further by parallel computing.  相似文献   

9.
Energy consistency for the material‐point method (MPM) is examined for thermodynamically consistent hyperelastic‐plastic materials. It is shown that MPM can be formulated with implicit, three‐ field variational, finite element algorithms which dissipate energy and conserve momentum for that class of material models. With a consistent mass matrix the resulting overall numerical method inherits the energy‐dissipative and momentum‐conserving properties of the mesh solution. Thus, the proposed MPM algorithm satisfies by construction a time‐discrete form of the second law of thermo‐ dynamics. Properties of the method are illustrated in numerical examples. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This study presents an isogeometric framework for incorporating representative volume element–based multiscale models into computational homogenization. First‐order finite deformation homogenization theory is derived within the framework of the method of multiscale virtual power, and Lagrange multipliers are used to illustrate the effects of considering different kinematical constraints. Using a Lagrange multiplier approach in the numerical implementation of the discrete system naturally leads to a consolidated treatment of the commonly employed representative volume element boundary conditions. Implementation of finite deformation computational strain‐driven, stress‐driven, and mixed homogenization is detailed in the context of isogeometric analysis (IGA), and performance is compared to standard finite element analysis. As finite deformations are considered, a numerical multiscale stability analysis procedure is also detailed for use with IGA. Unique implementation aspects that arise when computational homogenization is performed using IGA are discussed, and the developed framework is applied to a complex curved microstructure representing an architectured material.  相似文献   

11.
A three‐dimensional nonlocal multiscale discrete‐continuum model has been developed for modeling mechanical behavior of granular materials. In the proposed multiscale scheme, we establish an information‐passing coupling between the discrete element method, which explicitly replicates granular motion of individual particles, and a finite element continuum model, which captures nonlocal overall responses of the granular assemblies. The resulting multiscale discrete‐continuum coupling method retains the simplicity and efficiency of a continuum‐based finite element model, while circumventing mesh pathology in the post‐bifurcation regime by means of staggered nonlocal operator. We demonstrate that the multiscale coupling scheme is able to capture the plastic dilatancy and pressure‐sensitive frictional responses commonly observed inside dilatant shear bands, without employing a phenomenological plasticity model at a macroscopic level. In addition, internal variables, such as plastic dilatancy and plastic flow direction, are now inferred directly from granular physics, without introducing unnecessary empirical relations and phenomenology. The simple shear and the biaxial compression tests are used to analyze the onset and evolution of shear bands in granular materials and sensitivity to mesh density. The robustness and the accuracy of the proposed multiscale model are verified in comparisons with single‐scale benchmark discrete element method simulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A coupling extended multiscale finite element method (CEMsFEM) is developed for the dynamic analysis of heterogeneous saturated porous media. The coupling numerical base functions are constructed by a unified method with an equivalent stiffness matrix. To improve the computational accuracy, an additional coupling term that could reflect the interaction of the deformations among different directions is introduced into the numerical base functions. In addition, a kind of multi‐node coarse element is adopted to describe the complex high‐order deformation on the boundary of the coarse element for the two‐dimensional dynamic problem. The coarse element tests show that the coupling numerical base functions could not only take account of the interaction of the solid skeleton and the pore fluid but also consider the effect of the inertial force in the dynamic problems. On the other hand, based on the static balance condition of the coarse element, an improved downscaling technique is proposed to directly obtain the satisfying microscopic solutions in the CEMsFEM. Both one‐dimensional and two‐dimensional numerical examples of the heterogeneous saturated porous media are carried out, and the results verify the validity and the efficiency of the CEMsFEM by comparing with the conventional finite element method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A spatial and temporal multiscale asymptotic homogenization method used to simulate thermo‐dynamic wave propagation in periodic multiphase materials is systematically studied. A general field governing equation of thermo‐dynamic wave propagation is expressed in a unified form with both inertia and velocity terms. Amplified spatial and reduced temporal scales are, respectively, introduced to account for spatial and temporal fluctuations and non‐local effects in the homogenized solution due to material heterogeneity and diverse time scales. The model is derived from the higher‐order homogenization theory with multiple spatial and temporal scales. It is also shown that the modified higher‐order terms bring in a non‐local dispersion effect of the microstructure of multiphase materials. One‐dimensional non‐Fourier heat conduction and dynamic problems under a thermal shock are computed to demonstrate the efficiency and validity of the developed procedure. The results indicate the disadvantages of classical spatial homogenization. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, the non‐isothermal elasto‐plastic behaviour of multiphase geomaterials in dynamics is investigated with a thermo‐hydro‐mechanical model of porous media. The supporting mathematical model is based on averaging procedures within the hybrid mixture theory. A computationally efficient reduced formulation of the macroscopic balance equations that neglects the relative acceleration of the fluids, and the convective terms is adopted. The modified effective stress state is limited by the Drucker–Prager yield surface. Small strains and dynamic loading conditions are assumed. The standard Galerkin procedure of the finite element method is applied to discretize the governing equations in space, while the generalized Newmark scheme is used for the time discretization. The final non‐linear set of equations is solved by the Newton method with a monolithic approach. Coupled dynamic analyses of strain localization in globally undrained samples of dense and medium dense sands are presented as examples. Vapour pressure below the saturation water pressure (cavitation) develops at localization in case of dense sands, as experimentally observed. A numerical study of the regularization properties of the finite element model is shown and discussed. A non‐isothermal case of incipient strain localization induced by temperature increase where evaporation takes place is also analysed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A coupled finite element model is developed to analyse the thermo‐mechanical behaviour of a widely used polymer composite panel subject to high temperatures at service conditions. Thermo‐chemical and thermo‐mechanical models of previous researchers have been extended to study the thermo‐chemical decomposition, internal heat and mass transfer, deformation and the stress state of the material. The phenomena of heat and mass transfer and thermo‐mechanical deformation are simulated using three sets of governing equations, i.e. energy, gas mass diffusion and deformation equations. These equations are then assembled into a coupled matrix equation using the Bubnov–Galerkin finite element formulation and then solved simultaneously at each time interval. An experimentally tested 1.09 cm thick glass‐fibre woven‐roving/polyester resin composite panel is analysed using the numerical model. Results are presented in the form of temperature, pore pressure, deformation, strain and stress profiles and discussed. The maximum normal stress failure criterion is used in order to establish the load‐bearing capability of the composite panel. Significant pore gas pressure build‐ups (to 0.8 MPa and higher) have been perceived at high thermo‐chemical decomposition rates where the material experiences a complex expansion/contraction phenomenon. It is found that the composite panel experiences structural instability at elevated temperatures up to 300°C but retains its integrity even under moderate external loading. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

The thermo‐mechanical testing of high performance polyimide films Type HPPST supplied by Dupont® was conducted at different strain rates and in different temperature environments. The stress‐strain behavior of materials was investigated, and the dependence of Young's modulus on temperature and strain rate is reported. In view of the uncertainty of the Young's modulus determination, the specimens were tested with unloading‐reloading to verify the test results. Constant strain rate uniaxial tensile tests and long‐time creep tests at various temperatures were performed to characterize the time‐temperature‐dependent mechanical property precisely. Cyclic loading tests were also implemented on specimens to investigate cyclic stress‐strain behaviors. This research is expected to enhance finite‐element‐modeling accuracy and characterize material properties precisely.  相似文献   

17.
An updated Lagrangian implicit FEM model for the analysis of large thermo‐mechanically coupled hyperelastic‐viscoplastic deformations of isotropic porous materials is considered. An appropriate framework for constitutive modelling is introduced that includes a stress‐free thermally expanded configuration and a plastically deformed unstressed damaged configuration. A two‐level iterative scheme is employed at each time increment to solve the field equations governing the conservation of momentum (mechanical step) and the conservation of energy (thermal step) for the coupled thermo‐mechanical problem. Exact linearizations for the calculation of the tangent stiffness are performed in each of these solution steps. A fully implicit, thermo‐mechanically coupled and incrementally objective Euler‐backward radial return based map is developed for the time integration of the constitutive equations. The present model is used to analyse a number of benchmark examples including metal forming processes wherein temperature and the accumulated damage play an important role in influencing the deformation mechanism and the nature of the deformed workpiece. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Interfacial damage nucleation and evolution in reinforced elastomers subjected to finite strains is modelled using the mathematical theory of homogenization based on the asymptotic expansion of unknown variables. The microscale is characterized by a periodic unit cell, which contains particles dispersed in a blend and the particle matrix interface is characterized by a cohesive law. A novel numerical framework based on the perturbed Petrov–Galerkin method for the treatment of nearly incompressible behaviour is employed to solve the resulting boundary value problem on the microscale and the deformation path of a macroscale particle is predefined as in the micro‐history recovery procedure. A fully implicit and efficient finite element formulation, including consistent linearization, is presented. The proposed multiscale framework is capable of predicting the non‐homogeneous micro‐fields and damage nucleation and propagation along the particle matrix interface, as well as the macroscopic response and mechanical properties of the damaged continuum. Examples are considered involving simple unit cells in order to illustrate the multiscale algorithm and demonstrate the complexity of the underlying physical processes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper we investigate topics related to the numerical simulation of the testing of mechanical responses of samples of microheterogeneous solid material. Consistent with what is produced in dispersion manufacturing methods, the microstructures considered are generated by randomly distributing aggregates of particulate material throughout an otherwise homogeneous matrix material. Therefore, the resulting microstructures are irregular and non‐periodic. A primary problem in testing such materials is the fact that only finite‐sized samples can be tested, leading to no single response, but a distribution of responses. In this work, a technique employing potential energy principles is presented to interpret the results of testing groups of samples. Three‐dimensional numerical examples employing the finite element method are given to illustrate the overall analysis and computational testing process. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
An extended multiscale finite element method is developed for small-deformation elasto-plastic analysis of periodic truss materials. The base functions constructed numerically are employed to establish the relationship between the macroscopic displacement and the microscopic stress and strain. The unbalanced nodal forces in the micro-scale of unit cells are treated as the combined effects of macroscopic equivalent forces and microscopic perturbed forces, in which macroscopic equivalent forces are used to solve the macroscopic displacement field and microscopic perturbed forces are used to obtain the stress and strain in the micro-scale to make sure the correctness of the results obtained by the downscale computation in the elastic-plastic problems. Numerical examples are carried out and the results verify the validity and efficiency of the developed method by comparing it with the conventional finite element method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号