首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The boundary integral equation that results from the application of the reciprocity theorem to non‐linear or non‐homogeneous differential equations generally contains a domain integral. While methods exist for the meshless evaluation of these integrals, mesh‐based domain integration is generally more accurate and can be performed more quickly with the application of fast multipole methods. However, polygonalization of complex multiply‐connected geometries can become a costly task, especially in three‐dimensional analyses. In this paper, a method that allows a mesh‐based integration in complex domains, while retaining a simple mesh structure, is described. Although the technique is intended for the numerical solution of more complex differential equations, such as the Navier–Stokes equations, for simplicity the method is applied to the solution of a Poisson equation, in domains of varying complexity. It is shown that the error introduced by the auxiliary domain subtraction method is comparable to the discretization error, while the complexity of the mesh is significantly reduced. The behaviour of the error in the boundary solution observed with the application of the new method is analogous to the behaviour observed with conventional cell‐based domain integration. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
A precorrected fast Fourier transform (pFFT) accelerated boundary element method (BEM) for large‐scale transient elastodynamic analysis is developed and described in this paper. The frequency‐domain approach is used. To overcome the ‘wrap‐around’ problem associated with the discrete Fourier transform, the exponential window method (EWM) is employed and incorporated in the frequency‐domain BEM. An improved implementation scheme of the pFFT method based on polynomial interpolation technique is developed and applied to accelerate the elastodynamic BEM. This new scheme reduces the memory required to save the convolution matrix by a factor of 8. To further improve the efficiency of the code, a newly developed linear system solver based on the induced dimension reduction method is employed. Its performance is investigated and compared with that of the well‐known GMRES. The accuracy and computational efficiency of the method are evaluated and demonstrated by three examples: a classical benchmark, a plate subject to an impact loading and a porous cube with nearly half million DOFs subject to a step traction loading. Both analytical and experimental results are employed to validate the method. It has been found that the EWM can effectively resolve the wrap‐around problem and accurate time responses for an arbitrarily chosen time period can be obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents the non‐singular forms, in a global sense, of two‐dimensional Green's boundary formula and its normal derivative. The main advantage of the modified formulations is that they are amenable to solution by directly applying standard quadrature formulas over the entire integration domain; that is, the proposed element‐free method requires only nodal data. The approach includes expressing the unknown function as a truncated Fourier–Legendre series, together with transforming the integration interval [a, b] to [‐1,1] ; the series coefficients are thus to be determined. The hypersingular integral, interpreted in the Hadamard finite‐part sense, and some weakly singular integrals can be evaluated analytically; the remaining integrals are regular with the limiting values of the integrands defined explicitly when a source point coincides with a field point. The effectiveness of the modified formulations is examined by an elliptic cylinder subject to prescribed boundary conditions. The regularization is further applied to acoustic scattering problems. The well‐known Burton–Miller method, using a linear combination of the surface Helmholtz integral equation and its normal derivative, is adopted to overcome the non‐uniqueness problem. A general non‐singular form of the composite equation is derived. Comparisons with analytical solutions for acoustically soft and hard circular cylinders are made. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a boundary element formulation for the permanent Navier–Stokes equations in which the well-known closed-form fundamental solution for the steady Stokes equations is employed. In this way, from the integral representation formulae for the Stokes' equations, an integral equation is found in which the original non-linear convective terms of the Navier–Stokes equations appear as a domain integral. Additionally, the method of dual reciprocity is used to transform the domain integral to boundary integrals (this method is closely related to the method of particular integrals also used in the literature to transform domain integrals to boundary integrals). Numerical results are presented for the three-dimensional internal flow in a cylindrical container with a rotating cover, in which the accuracy of the method is shown.  相似文献   

5.
A non-singular 2-D boundary integral equation (BIE) in the Fourier-space frequency domain for determining the dynamic T-stress (DTS) is presented in this paper. This formulation, based upon the Fourier transform of the asymptotic expansion for the stress field in the vicinity of a crack tip, can be conveniently implemented as a post-processing step in a frequency-domain boundary element analysis of cracks. The proposed BIE is accurate as it can be directly collocated at the crack tip in question. The technique is also computationally effective as it simply requires a similar computing effort as that used in determining the dynamic stress components at an interior point of a domain. Five numerical examples involving both straight and curved cracks are studied to validate the proposed technique. For the frequency domain analysis of the DTS in these examples, the exponential window method is employed to obtain its time history.  相似文献   

6.
An improved form of the hypersingular boundary integral equation (BIE) for acoustic problems is developed in this paper. One popular method for overcoming non-unique problems that occur at characteristic frequencies is the well-known Burton and Miller (1971) method [7], which consists of a linear combination of the Helmholtz equation and its normal derivative equation. The crucial part in implementing this formulation is dealing with the hypersingular integrals. This paper proposes an improved reformulation of the Burton–Miller method and is used to regularize the hypersingular integrals using a new singularity subtraction technique and properties from the associated Laplace equations. It contains only weakly singular integrals and is directly valid for acoustic problems with arbitrary boundary conditions. This work is expected to lead to considerable progress in subsequent developments of the fast multipole boundary element method (FMBEM) for acoustic problems. Numerical examples of both radiation and scattering problems clearly demonstrate that the improved BIE can provide efficient, accurate, and reliable results for 3-D acoustics.  相似文献   

7.
A fast multipole boundary element method (FMBEM) extended by an adaptive mesh refinement algorithm for solving acoustic problems in three‐dimensional space is presented in this paper. The Collocation method is used, and the Burton–Miller formulation is employed to overcome the fictitious eigenfrequencies arising for exterior domain problems. Because of the application of the combined integral equation, the developed FMBEM is feasible for all positive wave numbers even up to high frequencies. In order to evaluate the hypersingular integral resulting from the Burton–Miller formulation of the boundary integral equation, an integration technique for arbitrary element order is applied. The fast multipole method combined with an arbitrary order h‐p mesh refinement strategy enables accurate computation of large‐scale systems. Numerical examples substantiate the high accuracy attainable by the developed FMBEM, while requiring only moderate computational effort at the same time. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The present work addresses a multiscale framework for fast‐Fourier‐transform–based computational homogenization. The framework considers the scale bridging between microscopic and macroscopic scales. While the macroscopic problem is discretized with finite elements, the microscopic problems are solved by means of fast‐Fourier‐transforms (FFTs) on periodic representative volume elements (RVEs). In such multiscale scenario, the computation of the effective properties of the microstructure is crucial. While effective quantities in terms of stresses and deformations can be computed from surface integrals along the boundary of the RVE, the computation of the associated moduli is not straightforward. The key contribution of the present paper is the derivation and implementation of an algorithmically consistent macroscopic tangent operator which directly resembles the effective moduli of the microstructure. The macroscopic tangent is derived by means of the classical Lippmann‐Schwinger equation and can be computed from a simple system of linear equations. This is performed through an efficient FFT‐based approach along with a conjugate gradient solver. The viability and efficiency of the method is demonstrated for a number of two‐ and three‐dimensional boundary value problems incorporating linear and nonlinear elasticity as well as viscoelastic material response.  相似文献   

9.
Numerical techniques are suggested in this paper, in order to improve the computational efficiency of the spectral boundary integral method, initiated by Clamond & Grue [D. Clamond and J. Grue. A fast method for fully nonlinear water‐wave computations. J. Fluid Mech. 2001; 447 : 337–355] for simulating nonlinear water waves. This method involves dealing with the high order convolutions by using Fourier transform or inverse Fourier transform and evaluating the integrals with weakly singular integrands. A de‐singularity technique is proposed here to help in efficiently evaluating the integrals with weak singularity. An anti‐aliasing technique is developed in this paper to overcome the aliasing problem associated with Fourier transform or inverse Fourier transform with a limited resolution. This paper also presents a technique for determining a critical value of the free surface, under which the integrals can be neglected. Numerical tests are carried out on the numerical techniques and on the improved method equipped with the techniques. The tests will demonstrate that the improved method can significantly accelerate the computation, in particular when waves are strongly nonlinear. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A novel substructuring method is developed for the coupling of boundary element and finite element subdomains in order to model three‐dimensional multi‐region elastodynamic problems in the time domain. The proposed procedure is based on the interface stiffness matrix approach for static multi‐region problems using variational principles together with the concept of Duhamel integrals. Unit impulses are applied at the boundary of each region in order to evaluate the impulse response matrices of the Duhamel (convolution) integrals. Although the method is not restricted to a special discretization technique, the regions are discretized using the boundary element method combined with the convolution quadrature method. This results in a time‐domain methodology with the advantages of performing computations in the Laplace domain, which produces very accurate and stable results as verified on test examples. In addition, the assembly of the boundary element regions and the coupling to finite elements are greatly simplified and more efficient. Finally, practical applications in the area of soil–structure interaction and tunneling problems are shown. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This article presents a wideband fast multipole method (FMM) to accelerate the boundary integral equation method for two‐dimensional elastodynamics in frequency domain. The present wideband FMM is established by coupling the low‐frequency FMM and the high‐frequency FMM that are formulated on the ingenious decomposition of the elastodynamic fundamental solution developed by Nishimura's group. For each of the two FMMs, we estimated the approximation parameters, that is, the expansion order for the low‐frequency FMM and the quadrature order for the high‐frequency FMM according to the requested accuracy, considering the coexistence of the derivatives of the Helmholtz kernels for the longitudinal and transcendental waves in the Burton–Muller type boundary integral equation of interest. In the numerical tests, the error resulting from the fast multipole approximation was monotonically decreased as the requested accuracy level was raised. Also, the computational complexity of the present fast boundary integral equation method agreed with the theory, that is, Nlog N, where N is the number of boundary elements in a series of scattering problems. The present fast boundary integral equation method is promising for simulations of the elastic systems with subwavelength structures. As an example, the wave propagation along a waveguide fabricated in a finite‐size phononic crystal was demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, a new effective boundary node method is presented for the solution of acoustic problems, directly in time domain, using exponential basis functions. Unlike many other methods using boundary information, the final coefficient matrix is sparse. The formulation is well suited for domains whose extent is relatively larger than the distance traveled by the acoustic wave in an increment of time. The exponential basis functions used satisfy the time‐space governing equation. This helps to choose a relatively large time increment and a moderate number of boundary points, which leads to reduction of computation time. The computation is performed incrementally using a weighted residual in time. Through a series of numerical examples, it is shown that the method, when combined with a domain decomposition strategy, is effectively capable of solving various 1‐ to 3‐dimensional acoustic problems.  相似文献   

13.
In this paper, an efficient and accurate meshless natural neighbour Petrov–Galerkin method (NNPG) is proposed to solve elasto‐static problems in two‐dimensional space. This method is derived from the generalized meshless local Petrov–Galerkin method (MLPG) as a special case. In the NNPG, the local supported trial functions are constructed based on the non‐Sibsonian interpolation and test functions are taken as the three‐node triangular FEM shape functions. The local weak forms of the equilibrium equation and the boundary conditions are satisfied in local polygonal sub‐domains. These sub‐domains are constructed with Delaunay tessellations and domain integrals are evaluated over included Delaunay triangles by using Gaussian quadrature scheme. As this method combines the advantages of natural neighbour interpolation with Petrov–Galerkin method together, no stiffness matrix assembly is required and no special treatment is needed to impose the essential boundary conditions. Several numerical examples are presented and the results show the presented method is easy to implement and very accurate for these problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
A new numerical method is proposed for the boundary element analysis of axisymmetric bodies. The method is based on complex Fourier series expansion of boundary quantities in circumferential direction, which reduces the boundary element equation to an integral equation in (rz) plane involving the Fourier coefficients of boundary quantities, where r and z are the co-ordinates of the (r, θ, z) cylindrical co-ordinate system. The kernels appearing in these integral equations can be computed effectively by discrete Fourier transform formulas together with the fast Fourier transform (FFT) algorithm, and the integral equations in (rz) plane can be solved by Gaussian quadrature, which establishes the Fourier coefficients associated with boundary quantities. The Fourier transform solution can then be inverted into (r, θ, z) space by using again discrete Fourier transform formulas together with FFT algorithm. In the study, first we present the formulation of the proposed method which is outlined above. Then, the method is assessed by using three sample problems. A good agreement is observed in the comparisons of the predictions of the method with those available in the literature. It is further found that the proposed method provides considerable saving in computer time compared to existing methods of literature. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the dual-reciprocity boundary-element method is used to model acoustic radiation in a subsonic non-uniform-flow field. The boundary-integral formulation is based on a direct boundary-integral equation developed very recently by the authors for acoustic radiation in a subsonic uniform flow. All the terms due to the non-uniform-flow effect are taken to the right-hand side and treated as source terms. The source terms result in a domain integral in the standard boundary-integral formulation. The dual-reciprocity method is then used to transform the resulting domain integral into boundary integrals. Numerical tests show reasonably good agreement with an analytical soution for a pulsating sphere submerged in a potential-flow field.  相似文献   

16.
In this paper, a new and simple boundary‐domain integral equation is presented for heat conduction problems with heat generation and non‐homogeneous thermal conductivity. Since a normalized temperature is introduced to formulate the integral equation, temperature gradients are not involved in the domain integrals. The Green's function for the Laplace equation is used and, therefore, the derived integral equation has a unified form for different heat generations and thermal conductivities. The arising domain integrals are converted into equivalent boundary integrals using the radial integration method (RIM) by expressing the normalized temperature using a series of basis functions and polynomials in global co‐ordinates. Numerical examples are given to demonstrate the robustness of the presented method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
To predict the vibro‐acoustic behavior of structures, both a structural problem and an acoustic problem have to be solved. For thin structures immersed in water, a strong interaction between the structural domain and fluid domain occurs. This significantly alters the resonance frequencies. In this work, the structure is modeled by the finite element method. The exterior acoustic problem is solved by a fast boundary element method employing hierarchical matrices. An FE‐BE formulation is presented, which allows the solution of the coupled eigenvalue problem and thus the prediction of the coupled eigenfrequencies and mode shapes. It is based on a Schur complement formulation of the FE‐BE system yielding a generalized eigenvalue problem. A Krylov–Schur solver is applied for its efficient solution. Hereby, the compressibility of the fluid is neglected. The coupled eigensolution is then used for a model reduction strategy allowing fast frequency sweep calculations. The efficiency of the proposed formulations is investigated with respect to memory consumption, accuracy, and computation time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the radial integration boundary element method is developed to solve acoustic eigenvalue problems for the sake of eliminating the frequency dependency of the coefficient matrices in traditional boundary element method. The radial integration method is presented to transform domain integrals to boundary integrals. In this case, the unknown acoustic variable contained in domain integrals is approximated with the use of compactly supported radial basis functions and the combination of radial basis functions and global functions. As a domain integrals transformation method, the radial integration method is based on pure mathematical treatments and eliminates the dependence on particular solutions of the dual reciprocity method and the particular integral method. Eventually, the acoustic eigenvalue analysis procedure based on the radial integration method resorts to a generalized eigenvalue problem rather than an enhanced determinant search method or a standard eigenvalue analysis with matrices of large size, just like the multiple reciprocity method. Several numerical examples are presented to demonstrate the validity and accuracy of the proposed approach.  相似文献   

19.
This work presents a multi‐domain decomposition integral equation method for the numerical solution of domain dominant problems, for which it is known that the standard Boundary Element Method (BEM) is in disadvantage in comparison with classical domain schemes, such as Finite Difference (FDM) and Finite Element (FEM) methods. As in the recently developed Green Element Method (GEM), in the present approach the original domain is divided into several subdomains. In each of them the corresponding Green's integral representational formula is applied, and on the interfaces of the adjacent subregions the full matching conditions are imposed. In contrast with the GEM, where in each subregion the domain integrals are computed by the use of cell integration, here those integrals are transformed into surface integrals at the contour of each subregion via the Dual Reciprocity Method (DRM), using some of the most efficient radial basis functions known in the literature on mathematical interpolation. In the numerical examples presented in the paper, the contour elements are defined in terms of isoparametric linear elements, for which the analytical integrations of the kernels of the integral representation formula are known. As in the FEM and GEM the obtained global matrix system possesses a banded structure. However in contrast with these two methods (GEM and non‐Hermitian FEM), here one is able to solve the system for the complete internal nodal variables, i.e. the field variables and their derivatives, without any additional interpolation. Finally, some examples showing the accuracy, the efficiency, and the flexibility of the method for the solution of the linear and non‐linear convection–diffusion equation are presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
The evaluation of volume integrals that arise in boundary integral formulations for non‐homogeneous problems was considered. Using the “Galerkin vector” to represent the Green's function, the volume integral was decomposed into a boundary integral, together with a volume integral wherein the source function was everywhere zero on the boundary. This new volume integral can be evaluated using a regular grid of cells covering the domain, with all cell integrals, including partial cells at the boundary, evaluated by simple linear interpolation of vertex values. For grid vertices that lie close to the boundary, the near‐singular integrals were handled by partial analytic integration. The method employed a Galerkin approximation and was presented in terms of the three‐dimensional Poisson problem. An axisymmetric formulation was also presented, and in this setting, the solution of a nonlinear problem was considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号