首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ca2+ channels in distinct subcellular compartments of neurons mediate voltage-dependent Ca2+ influx, which integrates synaptic responses, regulates gene expression, and initiates synaptic transmission. Antibodies that specifically recognize the alpha1 subunits of class A, B, C, D, and E Ca2+ channels have been used to investigate the localization of these voltage-gated ion channels on spinal motor neurons, interneurons, and nerve terminals of the adult rat. Class A P/Q-type Ca2+ channels were present mainly in a punctate pattern in nerve terminals located along the cell bodies and dendrites of motor neurons. Both smooth and punctate staining patterns were observed over the surface of the cell bodies and dendrites with antibodies to class B N-type Ca2+ channels, indicating the presence of these channels in the cell surface membrane and in nerve terminals. Class C and D L-type and class E R-type Ca2+ channels were distributed mainly over the cell soma and proximal dendrites. Class A P/Q-type Ca2+ channels were present predominantly in the presynaptic terminals of motor neurons at the neuromuscular junction. Occasional nerve terminals innervating skeletal muscles from the hindlimb were labeled with antibodies against class B N-type Ca2+ channels. Staining of the dorsal laminae of the rat spinal cord revealed a complementary distribution of class A and class B Ca2+ channels in nerve terminals in the deeper versus the superficial laminae. Many of the nerve terminals immunoreactive for class B N-type Ca2+ channels also contained substance P, an important neuropeptide in pain pathways, suggesting that N-type Ca2+ channels are predominant at synapses that carry nociceptive information into the spinal cord.  相似文献   

2.
3.
One major pathway for calcium entry into neurones is through voltage-activated calcium channels. The distribution of calcium channels over the membrane surface is important for their contribution to neuronal function. Electrophysiological recordings from thalamic cells in situ and after acute isolation demonstrated the presence of high-voltage activated calcium currents. The use of specific L-type calcium channel agonists and antagonists of the dihydropyridine type revealed an about 40% contribution of L-type channels to the total high-voltage-activated calcium current. In order to localize L-type calcium channels in thalamic neurones, fluorescent dihydropyridines were used. They were combined with the fluorescent dye RH414, which allowed the use of a ratio technique and thereby the determination of channel density. The distribution of L-type channels was analysed in the three main thalamic cell types: thalamocortical relay cells, local interneurones and reticular thalamic neurones. While channel density was highest in the soma and decreased significantly in the dendritic region, channels appeared to be clustered differentially in the three types of cells. In thalamocortical cells, L-type channels were clustered in high density around the base of dendrites, while they were more evenly distributed on the soma of interneurones. Reticular thalamic neurones exhibited high density of L-type channels in more central somatic regions. The differential localization of L-type calcium channels found in this study implies their predominate involvement in the regulation of somatic and proximal dendritic calcium-dependent processes, which may be of importance for specific thalamic functions, such as those mediating the transition from rhythmic burst activity during sleep to single spike activity during wakefulness or regulating the relay of visual information.  相似文献   

4.
In the present study, we investigated the role of channel subunits in the membrane targeting of voltage-dependent L-type calcium channel complexes. We co-expressed the calcium channel pore-forming alpha1C subunit with different accessory beta subunits in HEK-tsA201 cells and examined the subcellular localization of the channel subunits by immunohistochemistry using confocal microscopy and whole-cell radioligand binding studies. While the pore-forming alpha1C subunit exhibited perinuclear staining when expressed alone, and several of the wild-type and mutant beta subunits also exhibited intracellular staining, co-expression of the alpha1C subunit with either the wild-type beta2a subunit, a palmitoylation-deficient beta2a(C3S/C4S) mutant or three other nonpalmitoylated beta isoforms (beta1b, beta3, and beta4 subunits) resulted in the redistribution of both the alpha1C and beta subunits into clusters along the cell surface. Furthermore, the redistribution of calcium channel complexes to the plasma membrane was observed when alpha1C was co-expressed with an N- and C-terminal truncated mutant beta2a containing only the central conserved regions. However, when the alpha1C subunit was co-expressed with an alpha1 beta interaction-deficient mutant, beta2aBID-, we did not observe formation of the channels at the plasma membrane. In addition, an Src homology 3 motif mutant of beta2a that was unable to interact with the alpha1C subunit also failed to target channel complexes to the plasma membrane. Interestingly, co-expression of the pore-forming alpha1C subunit with the largely peripheral accessory alpha2 delta subunit was ineffective in recruiting alpha1C to the plasma membrane, while co-distribution of all three subunits was observed when beta2a was co-expressed with the alpha1C and alpha2 delta subunits. Taken together, our results suggested that the signal necessary for correct plasma membrane targeting of the class C L-type calcium channel complexes is generated as a result of a functional interaction between the alpha1 and beta subunits.  相似文献   

5.
Tottering mice inherit a recessive mutation of the calcium channel alpha1A subunit that causes ataxia, polyspike discharges, and intermittent dystonic episodes. The calcium channel alpha1A subunit gene encodes the pore-forming protein of P/Q-type voltage-dependent calcium channels and is predominantly expressed in cerebellar granule and Purkinje neurons with moderate expression in hippocampus and inferior colliculus. Because calcium misregulation likely underlies the tottering mouse phenotype, calcium channel blockers were tested for their ability to block the motor episodes. Pharmacologic agents that specifically block L-type voltage-dependent calcium channels, but not P/Q-type calcium channels, prevented the inducible dystonia of tottering mutant mice. Specifically, the dihydropyridines nimodipine, nifedipine, and nitrendipine, the benzothiazepine diltiazem, and the phenylalkylamine verapamil all prevented restraint-induced tottering mouse motor episodes. Conversely, the L-type calcium channel agonist Bay K8644 induced stereotypic tottering mouse dystonic at concentrations significantly below those required to induce seizures in control mice. In situ hybridization demonstrated that L-type calcium channel alpha1C subunit mRNA expression was up-regulated in the Purkinje cells of tottering mice. Radioligand binding with [3H]nitrendipine also revealed a significant increase in the density of L-type calcium channels in tottering mouse cerebellum. These data suggest that although a P/Q-type calcium channel mutation is the primary defect in tottering mice, L-type calcium channels may contribute to the generation of the intermittent dystonia observed in these mice. The susceptibility of L-type calcium channels to voltage-dependent facilitation may promote this abnormal motor phenotype.  相似文献   

6.
Voltage-gated Ca2+ channels in vertebrates comprise at least seven molecular subtypes, each of which produces a current with distinct kinetics and pharmacology. Although several invertebrate Ca2+ channel alpha1 subunits have also been cloned, their functional characteristics remain unclear, as heterologous expression of a full-length invertebrate channel has not previously been reported. We have cloned a cDNA encoding the alpha1 subunit of a voltage-gated Ca2+ channel from the scyphozoan jellyfish Cyanea capillata, one of the earliest existing organisms to possess neural and muscle tissue. The deduced amino acid sequence of this subunit, named CyCaalpha1, is more similar to vertebrate L-type channels (alpha1S, alpha1C, and alpha1D) than to non-L-type channels (alpha1A, alpha1B, and alpha1E) or low voltage-activated channels (alpha1G). Expression of CyCaalpha1 in Xenopus oocytes produces a high voltage-activated Ca2+ current that, unlike vertebrate L-type currents, is only weakly sensitive to 1,4-dihydropyridine or phenylalkylamine Ca2+ channel blockers and is not potentiated by the agonist S(-)-BayK 8644. In addition, the channel is less permeable to Ba2+ than to Ca2+ and is more permeable to Sr2+. CyCaalpha1 thus represents an ancestral L-type alpha1 subunit with significant functional differences from mammalian L-type channels.  相似文献   

7.
Two size forms of the class B N-type calcium channel alpha 1 subunit were recently identified with CNB1, an antipeptide antibody directed against an intracellular loop of this channel (Westenbroek, R.E., Hell, J.W., Warner, C., Dubel, S.J., Snutch, T.P., and Catterall, W.A. (1992) Neuron 9, 1099-1115). To investigate the biochemical differences between these two size forms, the antibodies CNB3 and CNB4 were raised against peptides with sequences corresponding to the COOH-terminal end of the full-length form. Immunoblot experiments demonstrated that both antibodies specifically recognize the longer form of 250 kDa, indicating that the COOH-terminal regions of the two size forms of the class B N-type channel alpha 1 subunit are different. Phosphorylation experiments with immunopurified calcium channels and different second messenger-activated protein kinases revealed that both the 220- and 250-kDa forms of the class B N-type calcium channel alpha 1 subunit are substrates for cAMP-dependent protein kinase, cGMP-dependent protein kinase, and protein kinase C. These three kinases incorporated approximately 1 mol of phosphate/mol of binding sites for omega-conotoxin (omega-CgTx) GVIA, a ligand specific for the N-type calcium channel, and may regulate the activity of both forms in vivo. In contrast, calcium- and calmodulin-dependent protein kinase II (CaM kinase II) phosphorylated only the long form of the class B N-type calcium channel alpha 1 subunit, with a stoichiometry of 0.5 mol of phosphate/mol of total omega-CgTx GVIA binding sites. Specific phosphorylation of the long form of the class B alpha 1 subunit by CaM kinase II may differentially regulate the function of N-type calcium channels containing different size forms of their alpha 1 subunits in vivo.  相似文献   

8.
Protein kinase C (PKC) acutely increases calcium currents in Aplysia bag cell neurons by recruiting calcium channels different from those constitutively active in the plasma membrane. To study the mechanism of PKC regulation we previously identified two calcium channel alpha1-subunits expressed in bag cell neurons. One of these, BC-alpha1A, is localized to vesicles concentrated primarily in somata and growth cones. We used antibodies to BC-alpha1A to analyze its expression in the bag cell neurons of juvenile Aplysia at a developmental stage at which PKC-sensitive calcium currents have previously been shown to be low. We find that vesicular BC-alpha1A staining is generally reduced in juvenile bag cell neurons but that its expression level can vary among juvenile animals. In 17 bag cell clusters examined, the percentage of neurons that displayed punctate alphaBC-alpha1A staining ranged from 0 to 85%. Sampling of calcium currents from cells of the same clusters by whole cell patch-clamp techniques revealed that the PKC-sensitive calcium current density is significantly correlated with the degree of vesicular staining. In contrast, no correlation of basal calcium current levels with aBC-alpha1A staining was found. These results strongly suggest that BC-alpha1A, a member of the ABE-subfamily of calcium channels, carries the PKC-sensitive calcium current in bag cell neurons. They are consistent with a model in which PKC recruits channels from the vesicular pool to the plasma membrane.  相似文献   

9.
Cardiac inotropic effects of beta adrenergic agonists occur mainly through an increase in L-type (class C) calcium channel activity. This response has been attributed to phosphorylation of the L-type Ca channel, or a closely associated protein, by the cAMP-dependent protein kinase A (PKA). Among the three subunits forming the cardiac L-type Ca channel (alpha 1, beta and alpha 2-delta), biochemical studies have revealed that two subunits, alpha 1 and beta, are phosphorylated in vitro by protein kinase A, the alpha 1 subunit being the primary target. However, attempts to reconstitute the cAMP-dependent regulation of the expressed class C Ca channel, either in Xenopus oocytes or in cell lines, have provided contradictory results. We were unable to detect cAMP-dependent modulation of class C alpha 1 subunit Ca channels expressed in Xenopus oocytes, even when coinjected with auxiliary subunits beta and alpha 2-delta. Nevertheless, activity of Ca channels recorded from cardiac-mRNA injected oocytes was potentiated by injection of cAMP or PKA, even when expression of the beta subunit was suppressed using antisense oligonucleotide. Taken together, these results indicate that cAMP-dependent regulation does not exclusively involve the alpha 1 and the beta subunits of the Ca channel and suggest that unidentified protein(s), expressed in cardiac tissue, are most likely necessary.  相似文献   

10.
The expression of multiple classes of voltage-dependent calcium channels (VDCCs) allows neurons to tailor calcium signaling to functionally discrete cellular regions. In the developing hippocampus a central issue is whether the expression of VDCC subtypes plays a role in key phases such as migration and synaptogenesis. Using radioligand binding and immunoblotting, we show that some N-type VDCCs exist before birth, consistent with a role in migration; however, most N-VDCC subunit expression is postnatal, coinciding with synaptogenesis. Immunoprecipitation studies indicate that the increased expression of N-VDCCs in early development occurs without subunit switching because there is no change in the fraction of beta3 subunits in the N-VDCC alpha1B-beta3 heteromers. Fluorescence imaging of cell surface N-VDCCs during this period reveals that N-VDCCs are expressed on somata before dendrites and that this expression is asynchronous between different subfields of the hippocampus (CA3-CA4 before CA1-CA2 and dentate gyrus). Our data argue that N-VDCC expression is an important cue in the genesis of synaptic transmission in discrete hippocampal subfields.  相似文献   

11.
Specimens of human cerebral cortex were obtained during neurosurgical operations and studied by immunocytochemistry and electron microscopy, using antibodies to the metabotropic glutamate receptor subunit mGluR1a and the ionotropic glutamate receptor GluR2/3. A small number of non-pyramidal neuronal cell bodies were labelled for mGluR1a. Double immunolabelling with mGluR1a and GluR2/3 showed that most pyramidal cell bodies were labelled for GluR2/3 but not for mGluR1a. Despite the non-colocalisation of these two receptor subtypes in cell bodies, however, many dendrites and dendritic spines were double-labelled for mGluR1a and GluR2/3 at electron microscopy. As there is evidence that most neurons positive for GluR2/3 are pyramidal cells, this suggests that mGluR1a is present in dendrites of pyramidal neurons, despite absent or low levels of immunoreactivity in their cell bodies.  相似文献   

12.
Peptide toxins have proved to be useful agents, both in discriminating between different components of native calcium channel currents and in the molecular isolation and designation of their cloned channel counterparts. Here, we describe the isolation and characterization of the biochemical and physiological properties of a novel 74-amino acid peptide toxin (DW13.3) extracted from the venom of the spider Filistata hibernalis. The subtype specificity of DW13.3 was investigated using calcium channel currents recorded from two separate expression systems and several different cultured mammalian cell preparations. Overall, DW13.3 potently blocked all native calcium channel currents studied, with the exception of T-type currents recorded from GH3 cells. Examination of transiently expressed calcium channels in oocytes showed that DW13.3 had the highest affinity for alpha1A, followed by alpha1B > alpha1C > alpha1E. The affinity of DW13.3 for alpha1B N-type currents varied by 10-fold between expressed channels and native currents. Although block occurred in a similar 1:1 manner for all subtypes, DW13.3 produced a partial block of both alpha1A currents and P-type currents in cerebellar Purkinje cells. Selective occlusion of the P/Q-type channel ligand omega-conotoxin MVIIC (but not omega-agatoxin IVA) from its binding site in Purkinje neurons suggests that DW13.3 binds to a site close to the pore of the channel. The inhibition of different subtypes of calcium channels by DW13.3 reflects a common "macro" binding site present on all calcium channels except T-type.  相似文献   

13.
The cochlear nucleus (CN) is the first site in the central nervous system (CNS) for processing auditory information. Acetylcholine in the CN is primarily extrinsic and is an important neurotransmitter in efferent pathways thought to provide CNS modulation of afferent signal processing. Although muscarinic acetylcholine receptors have been studied in the CN, the role of nicotinic receptors has not. We examined the distribution of one nicotinic acetylcholine receptor subtype, the alpha-bungarotoxin receptor (alpha Bgt), in the CN. Quantitative autoradiography was used to localize receptors and in situ hybridization was used to localize alpha 7 mRNA in CN neurons that express the alpha Bgt receptor. Binding sites for alpha Bgt are abundant in the anterior ventral, posterior ventral, and dorsal divisions of the CN, and receptor density is low in the granule cell layer and interstitial nucleus. Heterogeneity in CN subregions is described. Four distinct patterns of alpha Bgt binding were observed: (1) binding over and around neuronal cell bodies, (2) receptors locally surrounding neurons, (3) dense punctate binding in the dorsal CN (DCN) not associated with neuronal cell bodies, and (4) diffuse fields of alpha Bgt receptors prominent in the DCN molecular layer, a field underlying the granule cell layer and in the medial sheet. The perikaryial receptors are abundant in the ventral CN (VCN) and are always associated with neurons expressing mRNA for the receptor. Other neurons in the VCN also express alpha 7 mRNA, but without alpha Bgt receptor expression associated with the cell body. In general, alpha Bgt receptor distribution parallels cholinergic terminal distribution, except in granule cell regions rich in cholinergic markers but low in alpha Bgt receptors. The findings indicate that alpha Bgt receptors are widespread in the CN but are selectively localized on somata, proximal dendrites, or distal dendrites depending on the specific CN subregion. The data are consistent with the hypothesis that descending cholinergic fibers modulate afferent auditory signals by regulating intracellular Ca2+ through alpha Bgt receptors.  相似文献   

14.
We report several unexpected findings that provide novel insights into the properties and interactions of the alpha 1 and beta subunits of dihydropyridine-sensitive L-type channels. First, the beta 2a subunit was expressed as multiple species of 68-72 kDa; the 70-72-kDa species arose from post-translational modification. Second, cell fractionation and immunocytochemical studies indicated that the hydrophilic beta 2a subunit, when expressed alone, was membrane-localized. Third, the beta 2a subunit increased the membrane localization of the alpha 1 subunit and the number of cells expressing L-type Ca2+ currents, without affecting the total amount of the expressed alpha 1C subunit. Expression of maximal currents in alpha 1C/beta 2a cotransfected cells paralleled the time course of expression of the beta subunit. Taken together, these results suggest that the beta subunit plays multiple roles in the formation, stabilization, targeting, and modulation of L-type channels.  相似文献   

15.
We have used intracellular dye-filling combined with multiple-labelling immunofluorescence to examine the dendritic morphology of neurons and their relations with neuropeptide-containing preganglionic terminals in the lumbar sympathetic chain of guinea-pigs. Presumptive vasoconstrictor neurons with immunoreactivity for both tyrosine hydroxylase and neuropeptide Y dendritic fields that were significantly smaller, on average, than those of presumptive pilomotor neurons containing immunoreactivity to tyrosine hydroxylase but not to neuropeptide Y. However, there was considerable variation in the sizes of the dendritic fields of the vasoconstrictor neurons. Preganglionic nerve terminals containing immunoreactivity to calcitonin gene-related peptide, but not to substance P, only surrounded cell bodies of vasoconstrictor neurons containing immunoreactivity to tyrosine hydroxylase and neuropeptide Y. In most cases, the neuropeptide-containing preganglionic terminals were not associated closely with the distal dendrites of these neurons. Few neuropeptide-containing terminals were associated closely with either the cell bodies or dendrites of the pilomotor neurons. These results show that there is a considerable range in the size of dendritic trees of sympathetic final motor neurons. Some of this variation is related to the pathways within which the neurons lie, so that presumptive pilomotor neurons generally are larger than presumptive vasoconstrictor neurons. The marked variation in size of vasoconstrictor neurons raises the possibility that there may be a size dependent recruitment of these neurons, similar to that seen in pools of spinal motor neurons. The distribution of the peptide-containing preganglionic endings suggests that they would act predominantly at the cell body and proximal dendrites of the final motor neurons.  相似文献   

16.
Alpha 2-Adrenoceptors are known to inhibit voltage-dependent Ca2+ channels located at neuronal cell bodies; the present study investigated whether this or alternative mechanisms, possibly downstream of Ca2+ entry, underlie the presynaptic alpha 2-adrenergic modulation of transmitter release from chick sympathetic neurons. Using chick sympathetic neurons, overflow of previously incorporated [3H]noradrenaline was elicited in the presence of extracellular Ca2+ by electrical pulses, 25 mM K+ or 10 microM nicotine, or by adding Ca2+ to otherwise Ca(2+)-free medium when cells had been made permeable by the calcium ionophore A23187 or by alpha-latrotoxin. Pretreatment of neurons with the N-type Ca2+ channel blocker omega-conotoxin GVIA and application of the alpha 2-adrenergic agonist UK 14304 reduced the overflow elicited by electrical pulses, K+ or nicotine, but not the overflow caused by Ca2+ after permeabilization with alpha-latrotoxin or A23187. In contrast, the L-type Ca2+ channel blocker nitrendipine reduced the overflow due to K+ and nicotine, but not the overflow following electrical stimulation or alpha-latrotoxin- and A23187-permeabilization. The inhibition of electrically evoked overflow by UK 14304 persisted in the presence of nitrendipine and the L-type Ca2+ channel agonist BayK 8644, which per se enhanced overflow. In omega-conotoxin GVIA-treated cultures, electrically evoked overflow was also enhanced by BayK 8644 and almost reached the value obtained in untreated neurons. However, UK 14304 lost its effect under these conditions. Whole-cell recordings of voltage-activated Ca2+ currents corroborated these results: UK 14304 inhibited Ca2+ currents by 33%, nitrendipine caused a 7% reduction, and BayK 8644 increased the currents by 30%. Moreover, the dihydropyridines failed to abolish the inhibition by UK 14304, but pretreatment with omega-conotoxin GVIA, which reduced mean amplitude from 0.95 to 0.23 nA, entirely prevented alpha 2-adrenergic effects. Our results indicate that the alpha 2-autoreceptor-mediated modulation of noradrenaline release from chick sympathetic neurons relies exclusively on the inhibition of omega-conotoxin GVIA-sensitive N-type Ca2+ channels. Mechanisms downstream of these channels and voltage-sensitive Ca2+ channels other than N-type appear not to be important.  相似文献   

17.
18.
There is increasing evidence that certain mRNAs are present in dendrites and can be translated there. The present study uses two strategies to evaluate whether dendrites also possess the machinery for protein glycosylation. First, precursor labeling techniques were used to conjunction with autoradiography to visualize glycosyltransferase activities that are characteristic of the rough endoplasmic reticulum (RER) (mannose) or the Golgi apparatus (GA) (galactose and fucose) in dendrites that had been separated from their cell bodies and in intact neurons treated with brefeldin A or low temperature. Second, immunocytochemical techniques were used to define the subcellular distribution of proteins that are considered markers of the RER (ribophorin I) and GA (p58, alpha-mannosidase II, galactosyltransferase, and TGN38/41). Autoradiographic analysis revealed that isolated dendrites incorporated sugar precursors in a tunicamycin-sensitive and protein synthesis-dependent manner. Moreover, when intact neurons were pulse-labeled with 3H-labeled sugars at low temperature or after treatment with brefeldin A, labeling was distributed over proximal and sometimes distal dendrites. Immunolabeling for RER markers was predominantly localized in cell bodies but extended for a considerable distance into dendrites of all neurons. Immunolabeling for GA markers was confined to the cell body in approximately 70% of the neurons, but in 30% of the neurons, the staining extended into proximal and middle dendrites. These results indicate that the machinery for glycosylation extends well into dendrites in many neurons.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号