首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune neuromuscular disease in which impairment of Ca2+ entry into the nerve ending and consequent impaired release of acetylcholine (ACh) results in muscle weakness. The identity of the primary antigenic target molecule(s) of the autoantibodies is uncertain. Electrophysiological studies and 45Ca2+ uptake studies implicate a direct effect on the Ca2+ channel complex at the motor nerve terminal. Some recent studies, however, suggest a more indirect interference caused by binding of autoantibodies to synaptotagmin or syntaxin, molecules presumed to be involved in docking and/or coupling the synaptic vesicles to the Ca2+ channels in the active zone for vesicle exocytosis and transmitter release. Western blot analyses of rat and human brain membrane proteins and pure recombinant synaptotagmin and syntaxin were used to examine directly the targets of LEMS autoantibodies and determine specifically whether or not synaptotagmin and/or syntaxin were general targets in LEMS. IgG from 14 patients with LEMS was used to probe western blots of gels containing synaptotagmin, syntaxin, rat synaptosomal proteins, and human brain membrane proteins. Several similar immunoreactive bands were observed using both rat and human brain membranes. These include high-molecular-weight protein bands whose size would be consistent with being components of Ca2+ channels. No reactive component was observed against either syntaxin or synaptotagmin in IgG of the 14 LEMS patients. However, both human and rat brain membranes contain proteins recognized by antibodies directed against synaptotagmin or syntaxin, indicating their immunologic relatedness and evolutionary conservation. These results suggest that large-molecular-weight proteins consistent with being Ca2+ channel subunits rather than syntaxin and synaptotagmin are general targets of LEMS autoantibodies.  相似文献   

2.
1. Thin slices of the posterior pituitary can be used as a preparation for the study of biophysical mechanisms underlying neuropeptide secretion. Patch-clamp techniques in this preparation have revealed the properties of ion channels that control the excitability of the nerve terminal membrane and have clarified the relation between Ca2+ and exocytosis. 2. Repetitive electrical activity at high frequencies broadens action potentials to allow more Ca2+ entry and thus enhance exocytosis. Action potential broadening results from the inactivation of a voltage-dependent K+ channel. 3. When repetitive electrical activity is sustained, secretion is depressed. This depression can be attributed in part to action potential failure caused by the opening of a Ca(2+)-activated K+ channel. This channel can be modulated by protein kinases, phosphatases, and G-proteins. 4. The inhibitory neurotransmitter GABA activates a GABAA receptor in the nerve terminal membrane. The gating of the associated Cl- channel depolarizes the membrane slightly to inactivate voltage-gated Na+ channels and block action potential propagation. 5. The response of the nerve terminal GABAA receptor is enhanced by neuroactive steroids and this can potentiate the inhibition of neurosecretion by GABA. The action of neurosteroids at this site could play a role in changes in neuropeptide secretion associated with reproductive transitions. 6. Ca2+ channels in the nerve terminal membrane are inactivated by sustained depolarization and by trains of brief pulses. Ca2+ entry promotes Ca2+ channel inactivation during trains by inhibiting the recovery of Ca2+ channels from inactivation. The inactivation of Ca2+ channels can play a role in defining the optimal frequency and train duration for evoking neuropeptide secretion. 7. Measurements of membrane capacitance in peptidergic nerve terminals have revealed rapid exocytosis and endocytosis evoked by Ca2+ entry through voltage-gated Ca2+ channels. Exocytosis is too rapid to account for the delays in neuropeptide secretion evoked by trains of action potentials. Endocytosis sets in rapidly after exocytosis with a time course comparable to that of the rapid endocytosis observed in nerve terminals at rapid synapses. Our results support the finding in rapid synaptic nerve terminals that endocytosis is inhibited by intracellular Ca2+. Multiple pools of vesicles were revealed, and these pools may reflect different stages in the mobilization and release of neuropeptide.  相似文献   

3.
In bovine chromaffin cells, the Ca2+ channels involved in exocytosis are effectively inhibited by ATP and opioids that are coreleased with catecholamines during cell activity. This autocrine loop causes a delay in Ca2+ channel activation that is quickly removed by preceding depolarizations. Changes in Ca2+ channel gating by secreted products thus make it possible to correlate Ca2+ channel activity to secretory events. Here, using cell-attached patch recordings, we found a remarkable correlation between delayed Ca2+ channel openings and neurotransmitter secretion induced by either local or whole-cell Ba2+ stimulation. The action is specific for N- and P/Q-type channels and largely prevented by PTX and mixtures of purinergic and opioid receptor antagonists. Overall, our data provide evidence that exocytosis, viewed through the autocrine inhibition of non-L-type channels, is detectable in membrane patches of approximately 1 microm2 distributed over 30%-40% of the total cell surface, while Ca2+ channels and autoreceptors are uniformly distributed over most of the cell membrane.  相似文献   

4.
The functional effect of activating Ca2+-permeable neuronal nicotinic acetylcholine receptors (nAChRs) on vesicle secretion was studied in PC12 cells. Single cells were patch-clamped in the whole-cell configuration and stimulated with either brief pulses of nicotine to activate the Ca2+-permeable nAChRs or with voltage steps to activate voltage-dependent Ca2+ channels. Membrane capacitance was used as a measure of vesicle secretion. Activation of nAChRs by nicotine application to cells voltage clamped at -80 mV evoked secretion. This secretion was completely abolished by nicotinic antagonists. When the cells were voltage clamped at +20 mV in the presence of Cd2+ to block voltage-activated Ca2+ channels, nicotine elicited a small amount of secretion. Most interestingly, when the nAChRs were activated coincidentally with voltage-dependent Ca2+ channels, secretion was augmented approximately twofold over the secretion elicited with voltage-dependent Ca2+ channels alone. Our data suggest that Ca2+ influx via nAChRs affects Ca2+-dependent cellular functions, including vesicle secretion. In addition to the secretion evoked by nAChR activation at hyperpolarized potentials, we demonstrate that even at depolarized potentials, nAChRs provide an important Ca2+ entry pathway underlying Ca2+-dependent cellular processes such as exocytosis.  相似文献   

5.
Cysteine string protein (Csp) is essential for neurotransmitter release in Drosophila. It has been suggested that Csp functions by regulating the activity of presynaptic Ca2+ channels, thus controlling exocytosis. We have examined the effect of overexpressing Csp1 in PC12 cells, a neuroendocrine cell line. PC12 cell clones overexpressing Csp1 did not show any changes in morphology, granule number or distribution, or in the levels of other key exocytotic proteins. This overexpression did not affect intracellular Ca2+ signals after depolarization, suggesting that Csp1 has no gross effect on Ca2+ channel activity in PC12 cells. In contrast, we show that Csp1 overexpression enhances the extent of exocytosis from permeabilized cells in response to Ca2+ or GTPgammaS in the absence of Ca2+. Because secretion from permeabilized cells is not influenced by Ca2+ channel activity, this represents the first demonstration that Csp has a direct role in regulated exocytosis.  相似文献   

6.
Munc18a, a mammalian neuronal homologue of Saccharomyces cerevisiae Sec1p protein, is essential for secretion, likely as a result of its high affinity interaction with the target SNARE protein syntaxin 1a (where SNARE is derived from SNAP receptor (the soluble N-ethylmaleimide-sensitive fusion protein)). However, this interaction inhibits vesicle SNARE interactions with syntaxin that are required for secretory vesicles to achieve competency for membrane fusion. As such, regulation of the interaction between Munc18a and syntaxin 1a may provide an important mechanism controlling secretory responsiveness. Cyclin-dependent kinase 5 (Cdk5), a member of the Cdc2 family of cell division kinases, co-purifies with Munc18a from rat brain, interacts directly with Munc18a in vitro, and utilizes Munc18a as a substrate for phosphorylation. We have now demonstrated that Cdk5 is capable of phosphorylating Munc18a in vitro within a preformed Munc18a.syntaxin 1a heterodimer complex and that this results in the disassembly of the complex. Using site-directed mutagenesis, the Cdk5 phosphorylation site on Munc18a was identified as Thr574. Stimulation of secretion from neuroendocrine cells produced a corresponding rapid translocation of cytosolic Cdk5 to a particulate fraction and an increase of Cdk5 kinase activity. Inhibition of Cdk5 with olomoucine decreased evoked norepinephrine secretion from chromaffin cells, an effect not observed with the inactive analogue iso-olomoucine. The effects of olomoucine were independent of calcium influx as evidenced by secretory inhibition in permeabilized chromaffin cells and in cells under whole-cell voltage clamp. Furthermore, transfection and expression in chromaffin cells of a neural specific Cdk5 activator, p25, led to a strong increase in nicotinic agonist-induced secretory responses. Our data suggest a model whereby Cdk5 acts to regulate Munc18a interaction with syntaxin 1a and thereby modulates the level of vesicle SNARE interaction with syntaxin 1a and secretory responsiveness.  相似文献   

7.
Pancreatic beta cells and cell lines were used in the present study to test the hypothesis that the molecular mechanisms controlling exocytosis from neuronal cells may be used by the beta cell to regulate insulin secretion. Using specific antisera raised against an array of synaptic proteins (SNAREs) implicated in the control of synaptic vesicle fusion and exocytosis, we have identified the expression of several SNAREs in the islet beta cell lines, beta TC6-f7 and HIT-T15, as well as in pancreatic islets. The v-SNARE vesicle-associated membrane protein (VAMP)-2 but not VAMP-1 immunoreactive proteins were detected in beta TC6-f7 and HIT-T15 cells and pancreatic islets. In these islet-derived cell lines, this 18-kDa protein comigrated with rat brain synaptic vesicle VAMP-2, which was cleaved by Tetanus toxin (TeTx). Immunofluorescence confocal microscopy and electron microscopy localized the VAMP-2 to the cytoplasmic side of insulin containing secretory granule membrane. In streptolysin O permeabilized HIT-T15 cells, TeTx inhibited Ca2+-evoked insulin release by 83 +/- 4.3%, which correlated well to the cleavage of VAMP-2. The beta cell lines were also shown to express a second vesicle (v)-SNARE, cellubrevin. The proposed neuronal target (t)-membrane SNAREs, SNAP-25, and syntaxin isoforms 1-4 were also detected by Western blotting. The beta cell 25-kDa SNAP-25 protein and syntaxin isoforms 1-3 were specifically cleaved by botulinum A and C toxins, respectively, as observed with the brain isoforms. These potential t-SNARES were localized by immunofluorescence microscopy primarily to the plasma membrane in beta cell lines as well as in islet beta cells. To determine the specific identity of the immunoreactive syntaxin-2 and -3 isoforms and to explore the possibility that these beta cells express the putative Ca2+-sensing molecule synaptotagmin III, RT-PCR was performed on the beta cell lines. These studies confirmed that betaTC6-F7 cells express syntaxin-2 isoforms, 2 and 2', but not 2' and express syntaxin-3. They further demonstrate the expression of synaptotagmin III. DNA sequence analysis revealed that rat and mouse beta cell syntaxins 2, 2' and synaptotagmin III are highly conserved at the nucleotide and predicted amino acid levels (95-98%). The presence of VAMP-2, nSec/Munc-18, SNAP-25 and syntaxin family of proteins, along with synaptotagmin III in the islet cells and in beta cell lines provide evidence that neurons and beta cells share similar molecular mechanisms for Ca2+-regulated exocytosis. The inhibition of Ca2+-evoked insulin secretion by the proteolytic cleavage of HIT-T15 cell VAMP-2 supports the hypothesis that these proteins play an integral role in the control of insulin exocytosis.  相似文献   

8.
The synaptic plasma membrane proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) are central participants in synaptic vesicle trafficking and neurotransmitter release. Together with the synaptic vesicle protein synaptobrevin/vesicle-associated membrane protein (VAMP), they serve as receptors for the general membrane trafficking factors N-ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (alpha-SNAP). Consequently, syntaxin, SNAP-25, and VAMP (and their isoforms in other membrane trafficking pathways) have been termed SNAP receptors (SNAREs). Because protein phosphorylation is a common and important mechanism for regulating a variety of cellular processes, including synaptic transmission, we have investigated the ability of syntaxin and SNAP-25 isoforms to serve as substrates for a variety of serine/threonine protein kinases. Syntaxins 1 A and 4 were phosphorylated by casein kinase II, whereas syntaxin 3 and SNAP-25 were phosphorylated by Ca2+- and calmodulin-dependent protein kinase II and cyclic AMP-dependent protein kinase, respectively. The biochemical consequences of SNARE protein phosphorylation included a reduced interaction between SNAP-25 and phosphorylated syntaxin 4 and an enhanced interaction between phosphorylated syntaxin 1A and the synaptic vesicle protein synaptotagmin I, a potential Ca2+ sensor in triggering synaptic vesicle exocytosis. No other effects on the formation of SNARE complexes (comprised of syntaxin, SNAP-25, and VAMP) or interactions involving n-Sec1 or alpha-SNAP were observed. These findings suggest that although phosphorylation does not directly regulate the assembly of the synaptic SNARE complex, it may serve to modulate SNARE complex function through other proteins, including synaptotagmin I.  相似文献   

9.
Adrenaline and noradrenaline are released from adrenal medullary chromaffin cells by regulated exocytosis from stored secretory granules. Many aspects of the mechanisms by which exocytosis is activated in chromaffin cells are now understood in detail and these cells have provided an important model for the study of neuroendocrine secretion in general. Exocytosis is triggered by Ca2+ influx which activates a multistep process involving at least two Ca(2+)-binding proteins with distinct Ca2+ affinities. Several cytosolic and membrane proteins have been implicated by functional studies as components of the exocytotic machinery. The likely roles of these proteins in exocytosis are discussed in this review and the questions that remain for the understanding of the molecular basis of catecholamine release are highlighted.  相似文献   

10.
Mast cells secrete a variety of biologically active substances that mediate inflammatory responses. Synaptotagmin(s) (Syts) are a gene family of proteins that are implicated in the control of Ca2+-dependent exocytosis. In the present study, we investigated the possible occurrence and functional involvement of Syt in the control of mast cell exocytosis. Here, we demonstrate that both connective tissue type and mucosal-like mast cells express Syt-immunoreactive proteins, and that these proteins are localized almost exclusively to their secretory granules. Furthermore, expression of Syt I, the neuronal Ca2+ sensor, in rat basophilic leukemia cells (RBL-2H3), a tumor analogue of mucosal mast cells, resulted in prominent potentiation and acceleration of Ca2+-dependent exocytosis. Therefore, these findings implicate Syt as a Ca2+ sensor that mediates regulated secretion in mast cells to calcium ionophore.  相似文献   

11.
We and others have previously shown that insulin-secreting cells of the pancreas express high levels of SNAP-25 (synaptosomal-associated protein of 25 kDa), a 206-amino acid t-SNARE (target soluble N-ethylmaleimide-sensitive factor attachment protein receptors) implicated in synaptic vesicle exocytosis. In the present study, we show that SNAP-25 is required for insulin secretion by transient transfection of Botulinum Neurotoxin A (BoNT/A) into insulin-secreting HIT-T15 cells. Transient expression of BoNT/A cleaved the endogenous as well as overexpressed SNAP-25 proteins and caused significant reductions in K+ and glucose-evoked secretion of insulin. To determine whether the inhibition of release was due to the depletion of functional SNAP-25 or the accumulation of proteolytic by-products, we transfected cells with SNAP-25 proteins from which the C-terminal nine amino acids had been deleted to mimic the effects of the toxin. This modified SNAP-25 (amino acids 1-197) remained bound to the plasma membrane but was as effective as the toxin at inhibiting insulin secretion. Microfluorimetry revealed that the inhibition of secretion was due neither to changes in basal cytosolic Ca2+ levels nor in Ca2+ influx evoked by K(+)-mediated plasma membrane depolarization. Electron microscopy revealed that cells transfected with either BoNT/A or truncated SNAP-25 contained significantly higher numbers of insulin granules, many of which clustered close to the plasma membrane. Together, these results demonstrate that functional SNAP-25 proteins are required for insulin secretion and suggest that the inhibitory action of BoNT/A toxin on insulin secretion is in part caused by the production of the plasma membrane-bound cleavage product, which itself interferes with insulin granule docking and fusion.  相似文献   

12.
Cultured rat cerebellar granule cells depolarized by high KCl, display a large component of Ca2+ influx through L-type voltage-dependent Ca2+ channels as defined by a sensitivity to 1 microM nifedipine. This Ca2+ influx is not coupled to neurotransmitter exocytosis but has implications for neuronal development. KCl stimulation in the absence of external Ca2+ followed by the readdition of Ca2+ allows the coupling of a class of L-type Ca2+ channels to neurotransmitter exocytosis as assessed by loading of glutamatergic pools with [3H]-D-aspartate. KCl stimulation in the absence of external Ca2+ ('predepolarization') enhances tyrosine phosphorylation of several cellular proteins, and inhibitors of tyrosine kinases block both phosphorylation and the neurotransmitter release coupled to the L-type Ca2+ channel. More specifically, an inhibitor of src family tyrosine kinases, PP1, blocks the effects of predepolarization suggesting a role for a src family kinase in the process. Furthermore, L-type Ca2+ channel recruitment and modulation of release could be activated with the tyrosine phosphatase inhibitor sodium orthovanadate. The phosphoproteins enhanced by predepolarization, which include the cytoskeletal proteins focal adhesion kinase (FAK) and vinculin, are also highly phosphorylated early on in culture when neurite outgrowth occurs. As the neurons develop a network of neurites, both tyrosine phosphorylation and L-type Ca2+ channel activity decrease. These results show a novel mechanism for the recruitment of L-type Ca2+ channels and their coupling to neurotransmitter release which involves tyrosine phosphorylation. This phenomenon has a role in cerebellar granule cell development.  相似文献   

13.
Secretory cells should in principle export substantial amounts of calcium via exocytosis since Ca2+ is sequestered in secretory granules. Based on a new technique for measurements of the extracellular calcium concentration in the vicinity of the cell membrane and on the droplet technique, we have monitored the rate of calcium extrusion from salivary gland acinar cells. Isoproterenol (ISP), a beta-adrenergic agonist and powerful secretogogue, evoked no change in the cytosolic free Ca2+ concentration ([Ca2+]i) but induced vigorous extracellular Ca2+ concentration ([Ca2+]i) spiking. The absence of [Ca2+]i elevation and the pulsatile nature of the changes in [Ca2+]i indicate that these spikes are most likely due to calcium release from secretory granules. The cholinergic agonist acetylcholine (ACh), which induces moderate secretion, evoked a marked rise in [Ca2+]i and a smooth rise in [Ca2+]i, most likely induced by plasma membrane calcium pumps, on which shortlasting [Ca2+]i spikes were superimposed. The rate of ISP-induced calcium efflux was very substantial. The calculated calcium loss during the first 100 s of supramaximal stimulation corresponded to a reduction of the total cellular calcium concentration of approximately 0.4 mM. We conclude that in salivary glands, calcium release via exocytosis is one of the main mechanisms extruding calcium from cells to the extracellular milieu.  相似文献   

14.
Many neuromodulators inhibit N-type Ca2+ currents via G protein-coupled pathways in acutely isolated superior cervical ganglion (SCG) neurons. Less is known about which neuromodulators affect release of norepinephrine (NE) at varicosities and terminals of these neurons. To address this question, we used carbon fiber amperometry to measure catecholamine secretion evoked by electrical stimulation at presumed sites of high terminal density in cultures of SCG neurons. The pharmacological properties of action potential-evoked NE release paralleled those of N-type Ca2+ channels: Release was completely blocked by Cd2+ or omega-conotoxin GVIA, reduced 50% by 10 microM NE or 62% by 2 microM UK-14,304, an alpha2-adrenergic agonist, and reduced 63% by 10 microM oxotremorine M (Oxo-M), a muscarinic agonist. Consistent with action at M2 or M4 receptor subtypes, Oxo-M could be antagonized by 10 microM muscarinic antagonists methoctramine and tropicamide but not by pirenzepine. After overnight incubation with pertussis toxin, inhibition by UK-14,304 and Oxo-M was much reduced. Other neuromodulators known to inhibit Ca2+ channels in these cells, including adenosine, prostaglandin E2, somatostatin, and secretin, also depressed secretion by 34-44%. In cultures treated with omega-conotoxin GVIA, secretion dependent on L-type Ca2+ channels was evoked with long exposure to high K+ Ringer's solution. This secretion was not sensitive to UK-14,304 or Oxo-M. Evidently, many neuromodulators act on the secretory terminals of SCG neurons, and the depression of NE release at terminals closely parallels the membrane-delimited inhibition of N-type Ca2+ currents in the soma.  相似文献   

15.
Pancreatic beta-cells secrete insulin by Ca2+-triggered exocytosis of insulin-containing large dense-core vesicles. Synaptotagmin is a Ca2+/phospholipid-binding protein and is a good candidate for the Ca2+ sensor for exocytosis of synaptic vesicles in neurons. In the present study, we generated a polyclonal antibody against synaptotagmin III, and found that synaptotagmin III immunoreactivity was present at high levels in insulin-containing pancreatic islet cells and insulin-secreting clonal MIN6 cells. In subcellular fractionations of MIN6 cells, synaptotagmin III was recovered in the vesicular fractions containing both insulin and vesicle-associated membrane protein-2 (VAMP-2), but not in synaptophysin-positive fractions. The secretory vesicles immunoprecipitated by anti-VAMP-2 antibody contained synaptotagmin III and insulin. In addition, treatment of streptolysin-O-permeabilized MIN6 cells with anti-synaptotagmin III antibody significantly inhibited Ca2+-triggered insulin secretion. These results indicate that synaptotagmin III is localized in insulin-containing dense-core vesicles in pancreatic beta-cells, and further strongly suggest that synaptotagmin III is the Ca2+ sensor in the exocytosis of insulin secretory vesicles.  相似文献   

16.
Progesterone interaction with human spermatozoa promotes a rise in intracellular Ca2+ and can trigger acrosomal exocytosis in capacitated cells. We have used nifedipine, a 1,4-dihydropyridine Ca2+ channel antagonist, to investigate the possibility that Ca2+ channels play a role in the progesterone-stimulated exocytotic response. Cells were assessed biochemically for the generation of diacylglycerol (DAG) and microscopically for acrosome loss using chlortetracycline fluorescence. When motile cells were preincubated for 5 hr using culture conditions similar to those used for successful human in vitro fertilization, a short exposure to progesterone significantly stimulated DAG formation and acrosomal exocytosis. The addition of nifedipine (10 and 100 nM), either at time 0 or just prior to progesterone introduction, significantly inhibited both DAG formation and exocytosis, suggesting that Ca2+ channels are involved in the responses observed. Treatment of capacitated cells with a synthetic permeant DAG stimulated exocytosis irrespective of whether nifedipine was present, indicating that Ca2+ channels function prior to DAG generation. The possibility that an influx of Na+, as well as Ca2+, might be involved in the exocytotic pathway was investigated using the monovalent cation ionophores monensin and nigericin. Both significantly stimulated DAG generation and acrosome loss, but the prior inclusion of nifedipine significantly inhibited all responses. These results strongly suggest that the entry of Ca2+ through Ca2+ channels, with characteristics similar to those of L-type, voltage-sensitive Ca2+ channels found in cardiac and skeletal muscle, is a crucial step in the sequence of events leading to exocytosis in progesterone-stimulated human spermatozoa. An influx of Na+ also may play a role, but at a point prior to the opening of Ca2+ channels.  相似文献   

17.
During nuclear assembly, vesicles derived from the mitotic disassembly of the nuclear membranes reform the nuclear envelope. The vesicles first bind to chromosomes, specifically recognize other nuclear vesicles and then fuse to enclose the chromosomes. The proteins that mediate these events are largely unknown. Using reconstituted extracts of Xenopus eggs, we found that nuclear vesicle fusion required elevated (microM) concentrations of free Ca2+ [Sullivan KMC. Busa WB. Wilson KL. (1993) Cell, 73, 1411-1422]. Our data suggest that Ca2+ is released from the vesicle lumen by the activation of IP3 receptors (ligand-gated Ca2+ channels). We propose that the role of IP3 receptors during nuclear assembly may be analogous to that of voltage-gated Ca2+ channels during regulated secretion: to provide a microdomain of high cytosolic Ca2+ that triggers fusion. In this article, we will briefly describe current ideas about nuclear assembly and disassembly, and summarize the evidence that IP3 receptors are required for nuclear vesicle fusion. We will discuss parallels between our results and the role of voltage-gated Ca2+ channels, and Ca2+, in regulated exocytosis. Finally, we will address the question of how IP3 receptors are activated during nuclear vesicle fusion: is there a signal that stimulates IP3 production, or is the channel activated directly?  相似文献   

18.
Green fluorescent protein fused to human chromogranin B or neuropeptide Y was expressed in PC12 cells and caused bright, punctate fluorescence. The fluorescent points colocalized with the endogenous secretory granule marker dopamine beta-hydroxylase. Stimulation of live PC12 cells with elevated [K+], or of permeabilized PC12 cells with Ca2+, led to Ca2+-dependent loss of fluorescence from neurites. Ca2+ stimulated secretion of both fusion proteins equally well. In living cells, single fluorescent granules were imaged by evanescent-wave fluorescence microscopy. Granules were seen to migrate; to stop, as if trapped by plasmalemmal docking sites; and then to disappear abruptly, as if through exocytosis. Evidently, GFP fused to secreted peptides is a fluorescent marker for dense-core secretory granules and may be used for time-resolved microscopy of single granules.  相似文献   

19.
The mechanisms by which glucose-dependent insulinotropic polypeptide (GIP) stimulates insulin secretion were investigated by measurements of whole-cell Ca2+ currents, the cytoplasmic Ca2+ concentration, and cell capacitance as an indicator of exocytosis in individual mouse pancreatic beta-cells maintained in short-term culture. GIP produced a 4.2-fold potentiation of depolarization-induced exocytosis. This stimulation of exocytosis was not associated with a change in the whole-cell Ca2+-current, and there was only a small increase (30%) in the cytoplasmic Ca2+ concentration [intercellular free Ca2+([Ca2+]i)]. The stimulatory effect of GIP on exocytosis was blocked by pretreatment with the specific protein kinase A (PKA) inhibitor Rp-8-Br-cAMPS. Glucagon-like peptide-I(7-36) amide (GLP-I) stimulated exocytosis (90%) in the presence of a maximal GIP concentration (100 nmol/l). Replacement of GLP-I with forskolin produced a similar stimulatory action on exocytosis. These effects of GLP-I and forskolin in the presence of GIP did not involve a change in the whole-cell Ca2+-current or [Ca2+]i. GIP was ineffective in the presence of both forskolin and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX). Under the same experimental conditions, the protein kinase C (PKC)-activating phorbol ester 4-phorbol 12-myristate 13-acetate (PMA) stimulated exocytosis (60%). Collectively, our data indicate that the insulinotropic hormone GIP stimulates insulin secretion from pancreatic beta-cells, through the cAMP/PKA signaling pathway, by interacting with the secretory machinery at a level distal to an elevation in [Ca2+]i.  相似文献   

20.
Previous reports have suggested the involvement of voltage-activated calcium (Ca2+) channels in bone metabolism and in particular on the secretion of osteocalcin by osteoblast-like cells. We now report that potassium (K+) channels can also modulate the secretion of osteocalcin by MG-63 cells, a human osteosarcoma cell line. When 1,25-dihydroxyvitamin D3(1,25(OH)2D3)-treated MG-63 cells were depolarized by step increases of the extracellular K+ concentration ([K+]out) from 5-30 mM, osteocalcin (OC) secretion increased from a control value of 218 +/- 13 to 369 +/- 18 ng/mg of protein/48 h (p < 0.005 by analysis of variance). In contrast, in the absence of 1,25(OH)2D3, there is no osteocalcin secretion nor any effect of cell depolarization on this activity. The depolarization-induced increase in 1,25(OH)2D3-dependent osteocalcin secretion was totally inhibited in the presence of 10 microM Nitrendipine (a Ca2+ channel blocker, p < 0.005) without affecting cellular alkaline phosphatase nor cell growth. Charybdotoxin, a selective blocker of Ca2+-dependent K+ channels (maxi-K) present in MG-63 cells, stimulated 1,25(OH)2D3-induced osteocalcin synthesis about 2-fold (p < 0.005) after either 30, 60, or 120 minutes of treatment. However, Charybdotoxin was without effect on basal release of osteocalcin in the absence of 1,25(OH)2D3 pretreatment. Using patch clamp technique, we occasionally observed the presence of a small conductance K+ channel, compatible with an ATP-dependent K+ channel (GK[ATP]) in nonstimulated cells, whereas multiple channel openings were observed when cells were treated with Diazoxide, a sulfonamide derivative which opens GK(ATP). Western blot analysis revealed the presence of the N-terminal peptide of GK(ATP) in MG-63 cells, and its expression was regulated with the proliferation rate of these cells, maximal detection by Western blots being observed during the logarithmic phase of the cycle. Glipizide and Glybenclamide, selective sulfonylureas which can block GK(ATP), dose-dependently enhanced 1,25(OH)2D3-induced OC secretion (p < 0.005). Reducing the extracellular calcium concentration with EGTA (microM range) totally inhibited the effect of Glipizide and Glybenclamide on osteocalcin secretion (p < 0.005), which remained at the same levels as controls. Diazoxide totally prevented the effect of these sulfonylureas. These results suggest that voltage-activated Ca2+ channels triggered via cell depolarization can enhance 1,25(OH)2D3-induced OC release by MG-63 cells. In addition, OC secretion is increased by blocking two types of K+ channels: maxi-K channels, which normally hyperpolarize cells and close Ca2+ channels, and GK(ATP) channels. The role of these channels is closely linked to the extracellular Ca2+ concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号