共查询到16条相似文献,搜索用时 0 毫秒
1.
The sorption kinetics of the divalent metals Zn, Co, Ni, and Cd to hematite were studied in single sorbate systems with high sorbate/sorbent ratios (from 1.67 to 3.33mol sorbate/mol sorption sites) in 10mM Na-piperazine N,N'-bis 2-ethane sulfonic acid (Na-PIPES) solution at pH 6.8. The experimental data showed a rapid initial sorption (half-time about 1min) followed by slower sorption that continued for 1-5 days. The sequence of fast to slow sorption kinetics was modeled by slow inner-sphere (IS) complexation in equilibrium with outer-sphere (OS) complexes. Although the OS reaction was fast and considered to be in equilibrium, the extent of OS complexation changed over time due to increased surface potential from the IS complexes. For example, the model showed that the dimensionless OS complexation function, K(os), decreased from 0.014 initially to 0.0016 at steady state due to sorption of 4x10(-5)M Zn(II) to 2gL(-1) hematite. Sorption rate constants, k(ads), for the various divalent metals ranged from 6.1 to 82.5M(-1)s(-1). Desorption rate constants, k(des), ranged from 5.2x10(-7) to 6.7x10(-5)s(-1). This study suggests that the conversion from OS to IS complex was the rate-determining step for the sorption of divalent metals on crystalline adsorbents. 相似文献
2.
Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies 总被引:3,自引:0,他引:3
Natural Jordanian sorbent (consisting of primary minerals, i.e., quartz and aluminosilicates and secondary minerals, i.e., calcite and dolomite) was shown to be effective for removing Zn(II), Pb(II) and Co(II) from aqueous solution. The major mineral constitutions of the sorbent are calcite and quartz. Dolomite was present as minor mineral and palygorskite was present as trace mineral. The sorbent has microporous structure with a modest surface area of 14.4 m(2)g(-1). pH(zpc) (pH of zero point charge) of the sorbent was estimated by alkaline-titration methods and a value of 9.5 was obtained. The sorption capacities of the metals were: 2.860, 0.320, 0.076 mmol cation g(-1) for Zn(II), Pb(II) and Co(II) at pH 6.5, 4.5 and 7.0, respectively. The shape of the experimental isotherm of Zn(II) was of a "L2" type, while that of Pb(II) and Co(II) was of a "L1" type according to Giles classification for isotherms. Sorption data of metals were described by Langmuir and Freundlich models over the entire concentration range. It was found that the mechanism of metal sorption was mainly due to precipitation of metal carbonate complexes. The overall sorption capacity decreased after acid treatment, as this decreased the extent of precipitation on calcite and dolomite. The effect of Zn(II) ions concentration on sorption kinetics was investigated. Kinetic data were accurately fitted to pseudo-first order and external diffusion models which indicated that sorption of Zn(II) occurred on the exterior surface of the sorbent and the contribution of internal diffusion mechanism was insignificant. Furthermore, the sorption rate of Zn(II) was found to be slow, where only 10-20% of the maximum capacity was utilized in the first 30 min of interaction. 相似文献
3.
V. S. Shunkov L. N. Puzyrnaya G. N. Pshinko A. A. Kosorukov V. Ya. Demchenko 《Journal of Water Chemistry and Technology》2018,40(5):279-284
The possibility of using magnetic sorbents for the removal of Co(II), Ni(II) and Cd(II) from water media is shown. It was established that magnetite is more effective compared with magnetic potassium–zinc hexacyanoferrate(II). The pH (> 4) and the dose of sorbents were defined for obtaining maximum possible degree of removing ions of specified metals from water media. 相似文献
4.
The desorption kinetic of trace elements (Cd, Zn, Co, Mn, Fe, Ag, and Cs) associated with Loire river natural suspended particulate matter (SPM; 0.4-63 microm) was followed up on times varying from 0.5 h to 30 days, from SPM previously contaminated during 1 h, 24 h and 30 days. Long term sorption kinetics indicated that the difference between sorption occurring during the period 0-30 days (time investigated in this study) and the period 0-48 h (time often used for sorption experiments) ranges from few to 25% according to the element. Desorption kinetics show that, whatever the age of the complex formed during the sorption step, the release tends to equilibrium between complexed and dissolved elements equivalent to the equilibrium obtained for sorption after a given time. However, the time to get this equilibrium depends on the aging of the complex and on the element. All the above features indicate different types of complexes formation and strength of the binding according to the age of the complex and according to the element. Using a multi-compartmental model, simulating the transfer of metals between water and different types of particulate sites, the relationships between the parameters describing slow and rapid processes helped in explaining the "aging" effect observed. 相似文献
5.
6.
Sorption of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) to synthetic resins 总被引:3,自引:0,他引:3
Methyl tert-butyl ether (MTBE) is a widely used gasoline oxygenate. Contamination of MTBE and its major degradation product tert-butyl alcohol (TBA) in groundwater and surface water has received great attention. However, sorption affinity and sorption mechanisms of MTBE and TBA to synthetic resins, which can be potentially used in removal of these contaminants from water, in passive sampling, or in enrichment of bacteria, have not been studied systemically. In this study, kinetic and equilibrium sorption experiments (single solute and binary mixtures) on four synthetic resins were conducted. The sorption affinity of the investigated sorbents for MTBE and TBA decreases in the order Ambersorb 563>Optipore L493>Amberlite XAD4>Amberlite XAD7, and all show higher sorption affinity for MTBE than for TBA. Binary experiments with o-xylene, a major compound of gasoline as co-contaminant, imply that all resins preferentially sorb o-xylene over MTBE or TBA, i.e., there is sorption competition. In the equilibrium aqueous concentration (Ceq) range (0.1-139.0 mg/L for MTBE, and 0.01-48.4 mg/L for TBA), experimental and modeling results as well as sorbent characteristics indicate that micropore filling and/or some other type of adsorption process (e.g., adsorption to specific sites of high sorption potential at low concentrations) rather than partitioning were the dominant sorption mechanisms. Optipore L493 has favourable sorption and desorption characteristics, and is a suitable sorbent, e.g., in bacteria enrichment or passive sampling for moderately polar compounds. However, for highly polar compounds such as TBA, Ambersorb 563 might be a better choice, especially in water treatment. 相似文献
7.
Cation-exchange separation of Co(2+)/Ni(2+) from aqueous solutions using water-soluble complexing agents of ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), and citrate was experimentally studied at 298 K. Experiments were carried out as a function of initial aqueous pH (1.0-6.0), concentration of total metals (1.5-45.0 mol/m(3)), the concentration ratio of two metals (0.1-10) and of complexing agent to the total metals (0-1). It was shown that the exchange selectivity strongly depended on solution pH and was not completely related to the affinity of any metal with the complexing agents. When a certain level of complexing agent was present, highly effective separation could be achieved at an appropriate pH range (for an equimolar metal solution, e.g., pH 2-3 with EDTA and NTA as well as pH>3 with IDA and citrate). The application potential of this method was highlighted for the separation of Co(2+) from binary mixtures in the presence of trace amount of Ni(2+) due to its high selectivity and the smaller amount of the complexing agents needed. 相似文献
8.
V. V. Goncharuk L. N. Puzyrnaya G. N. Pshinko A. A. Kosorukov V. Ya. Demchenko 《Journal of Water Chemistry and Technology》2011,33(5):288-292
A sample of a layered double hydroxide intercalated by EDTA has been synthesized and its chemical formula [Zn4Al2(OH)12](EDTA) · 8H2O was determined. The possibility of applying such sorbent for the extraction of Cu(II), Ni(II), and Co(II) from aqueous solutions was investigated. Comparative investigation of the sorption capacity of carbonate and chelate forms of layered double hydroxides was performed. It is shown that the degree of extraction of metals on sorbent [Zn4Al2(OH)12](EDTA) · 8H2O completely correlates with the stability of complex compounds of these metals in the solution. 相似文献
9.
The objective of this work is to develop a surface-modified biosorbent with enhanced sorption capacity for heavy metal ions. The biomass of Penicillium chrysogenum was modified with polyethylenimine (PEI) and then crosslinked with glutaraldehyde. The crosslinked PEI was chemically bonded on the biomass surface through the amine and carboxylate groups on the pristine biomass. The presence of the amine group was confirmed by X-ray photon spectroscopy (XPS) and Fourier transform infrared (FTIR) analysis, and the concentration of the amine groups on the biomass surface was found to be 2 mmol/g through potentiometric titration. The rugged morphology of the biomass surface after the modification was observed by scanning electron microscope (SEM). Compared with the pristine biomass, the modified biomass with amine groups showed a significant increase in sorption capacity for three metal ions, namely, copper, lead and nickel. The sorption isotherms of the biomass for three metals were well described by Langmuir equation, with a maximum sorption at 92 mg copper, 204 mg lead and 55 mg nickel per g biomass. The binding sites for the three metals attributed to the amine groups on the biomass surface were verified by FTIR analysis. 相似文献
10.
Multi-component adsorption of Ag(I), Cd(II) and Cu(II) by natural carbonaceous materials 总被引:1,自引:0,他引:1
Adsorption of silver, cadmium and copper from aqueous solutions by natural carbonaceous materials was investigated. The studied series of natural materials (spruce wood, pine bark, cork, peat, fusinite, lignite, oxidised lignite, bituminous coal and anthracite) was extended to include industrial carbon-rich materials: coke, activated carbon F-400 and Multisorb 100. Adsorption was tested on a single-component system and on the binary and ternary mixtures. All the materials used differ in their ability to adsorb selected metals. The adsorption of metals is significantly affected by the presence of other ions in solution. Total metal uptake was considerably higher in a mixture than single-ion adsorption. Chemical reactions, such as precipitation and reduction of metallic silver, play a role in metal uptake by bituminous coal, coke and activated carbon. 相似文献
11.
The sorption of two divalent metal ions, Cd(II) and Zn(II), onto untreated and differentially acid-treated cassava waste biomass over a wide range of reaction conditions was studied at 30°C. The metal ion removal from the spent biomass was also measured. The batch experiments show that pH 4.5–5.5 was the best range for the sorption of the metal ions for untreated and acid-treated biomass. Time-dependent experiments for the metal ions showed that for the two metals examined, binding to the cassava waste biomass was rapid and occurred within 30 min and completed within 1 h. High sorption capacities were observed for the two metals. The binding capacity experiments revealed the following amounts of metal ions bound per gram of biomass: 86.68 mg/g Cd, 55.82 mg/g Zn and 647.48 mg/g Cd, 559.74 mg/g Zn for untreated and acid-treated biomass, respectively. It was further found that the rate of sorption was particle-diffusion controlled, and the sorption rate coefficients were determined to be 2.30×10−1 min−1 (Cd2+), 4.0×10−3 min−1 (Zn2+) and 1.09×10−1 min−1 (Cd2+), 3.67×10−2 min−1 (Zn2+) for 0.5 and 1.00 M differential acid treatment, respectively. Desorption studies showed that acid treatment inhibited effective recovery of metal ions already bound to the biomass as a result of stronger sulfhydryl-metal bonds formed. Less than 25% of both metals were desorbed as concentration of acid treating reagent increases. However, over 60% Cd and 40% Zn were recovered from untreated biomass during the desorption study. The results from these studies indicated that both untreated and acid-treated cassava waste biomass could be employed in the removal of toxic and valuable metals from industrial effluents. 相似文献
12.
Heavy metal-contaminated soil and wastewater have been attracting an increasing amount of attention due to the potential threat to the surrounding environment and human health. Thus, in this study, citric acid (CA) and citric acid-containing wastewater (CACW) were selected for an evaluation of the influence of the contamination level of the soil, the concentration of citric acid, the contact time, the soil pH, and the ionic interaction on the desorption characteristics of three heavy metals (i.e., Cr(III), Mn(II), and Ni(II)). According to the experimental results, a high concentration of citric acid, an acidic condition, a low level of contamination, and a lengthy contact time were found to be beneficial for desorbing the heavy metals from the contaminated soil. Based on the experimental and calculated results, the H+ ions and organic ligands made substantial contributions to the release and adsorption of the heavy metals. The metal ions on the low selectivity sorption sites were leached out earlier than those on the high selectivity sorption sites. The removal percentages of Cr(III), Mn(II), and Ni(II) using CA with a contact time of 6?h were 39.9%, 77.0%, and 62.8%, respectively. By using the CACW as a desorbent, the removal percentages of Cr(III), Mn(II), and Ni(II) with a contact time of 6?h reached 21.4%, 26.9%, and 63.4%, respectively. This suggests a promising practical application of CACW for removing heavy metals from contaminated soil. 相似文献
13.
This study describes the preparation of two new chelating materials, MMSCB 3 and 5, derived from succinylated twice-mercerized sugarcane bagasse (MMSCB 1). MMSCB 3 and 5 were synthesized from MMSCB 1 using two different methods as described by Gurgel and Gil (2009). In the first method MMSCB 1 was activated with 1,3-diisopropylcarbodiimide and in the second with acetic anhydride (to form an internal anhydride) and later both were reacted with triethylenetetramine in order to obtain MMSCB 3 and 5. New obtained materials were characterized by mass percent gain, concentration of amine groups, FTIR, and elemental analysis. MMSCB 3 and 5 showed mass percent gain of 19.9 and 57.1%, concentration of amine groups of 2.0 and 2.1 mmol/g, and nitrogen content of 5.8 and 4.4%. The capacity of MMSCB 3 and 5 to adsorb Cu2+, Cd2+, and Pb2+ from aqueous single metal ion solutions was evaluated at different contact times, pHs, and initial metal ion concentrations. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacities of MMSCB 3 and 5 for Cu2+, Cd2+, and Pb2+ were found to be 59.5 and 69.4, 86.2 and 106.4, 158.7 and 222.2 mg/g, respectively. 相似文献
14.
Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater 总被引:1,自引:1,他引:1
Competitive effects of phosphate, silicate, sulfate, and carbonate on As(III) and As(V) removal at pH approximately 7.2 have been investigated to test the feasibility of Fe(II)(aq) and hydroxylapatite crystals as inexpensive and potentially efficient agents for remediation of contaminated well-water, using Bangladesh as a type study. Arsenic(III) removal approximately 50-55% is achieved, when Fe(II)(aq) oxidizes to Fe(III) and precipitates as Fe(OH)3 at 25 degrees C and 3h reaction time, in the presence of all the oxyanion. Similar results were obtained for well-water samples from two sites in Bangladesh. Heating at 95 degrees C for 24h results in 70% As(III) uptake due to precipitation of magnesian calcite. A two-step process, Fe(II) oxidation and Fe(OH)3 precipitation at 25 degrees C for 2h, followed by magnesian calcite precipitation at 95 degrees C for 3h, yields approximately 65% arsenic removal while reducing the expensive heating period. In the absence of silicate, up to 70% As(III) uptake occurs at 25 degrees C. In all cases, As(III) was oxidized to As(V) in solution by dissolved oxygen and the reaction rate was probably promoted by intermediates formed during Fe(II) oxidation. Iron-catalyzed oxidation of As(III) by oxygen and hydrogen peroxide is pH-dependent with formation of oxidants in the Fenton reaction. Buffering pH at near-neutral values by dissolved carbonate and hydroxylapatite seeds is important for faster Fe(II) oxidation kinetics ensuring rapid coprecipitation of As as As(V) in the ferric phases. 相似文献
15.
Miramand P Bustamante P Bentley D Kouéta N 《The Science of the total environment》2006,361(1-3):132-143
The developmental changes in the concentration of 8 essential and non-essential heavy metals (Ag, Cd, Cu, Co, Fe, Pb, V, Zn) in the tissues (digestive gland, cuttlebone and whole animal) of the common cuttlefish Sepia officinalis collected in the bay of the river Seine were monitored from the end of the embryogenesis until the adult reproductive stage. Compared to embryos, juveniles after hatching displayed much higher concentrations of Ag, Cu, Fe and Zn, suggesting an efficient incorporation from seawater. Conversely, the amounts of Cd, Pb and V in hatchlings remained constant suggesting that these metals are barely bioavailable for juveniles. Once the juveniles start to feed, the digestive gland appears to play a major role in the storage of all metals. After only one month of benthic life, the digestive gland already contains up to 90% of the total metal body burden, indicating that it plays a major role in the storage and presumed detoxification of the selected metals. Metal concentrations in the digestive gland increase in a logarithmic fashion with age during the entire life of cuttlefish, except for Ag, which decreases as soon as cuttlefish migrate to open sea. This strongly suggests that (1) Ag is excreted from the digestive gland in relation to presumably lower exposure in less contaminated environments compared to coastal waters and (2) the digestive gland of cephalopods could be a very good indicator of Ag contamination in the marine environment. 相似文献
16.
Elevated metal levels in fish are a concern for the fish themselves, their predators, and possibly humans who consume contaminated seafood. Metal bioaccumulation models often rely on assimilation efficiencies (AEs) of ingested metals and loss rate constants after dietary exposure (kefs). These models can be used to better understand processes regulating metal accumulation and can be used to make site-specific predictions of metal concentrations in animal tissues. Fish often consume a varied diet, and prey choice can influence these two parameters. We investigated the trophic transfer of As, Cd, Cr, Hg(II), and methylmercury (MeHg) from a benthic amphipod (Leptocheirus plumulosus) and an oligochaete (Lumbriculus variegatus) to killifish (Fundulus heteroclitus) using gamma-emitting radioisotopes. Except for MeHg, AEs varied between prey type. AEs were highest for MeHg (92%) and lowest for Cd (2.9-4.5%) and Cr (0.2-4%). Hg(II) showed the largest AE difference between prey type (14% amphipods, 24% worms). For Cd and Hg(II) kefs were higher after consuming amphipods than consuming worms. Tissue distribution data shows that Cd and Hg(II) were mainly associated with the intestine, whereas As and MeHg were transported throughout the body. Calculated trophic transfer factors (TTFs) suggest that MeHg is likely to biomagnify at this trophic step at all ingestion rates, whereas As, Cd, Cr, and Hg(II) will not. Data collected in this study and others indicate that using one prey item to calculate AE and kef could lead to an over- or underestimation of these parameters. 相似文献