首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oils from two kinds of pumpkin seeds, black and white ones, were extracted by supercritical CO2 (SC‐CO2). The technological variables for SC‐CO2 extraction were optimized and the resulting oils were analyzed by GC‐MS. As a result, the optimal conditions for SC‐CO2 extraction were as follows: 25~30 MPa, 45 °C, SC‐CO2 flow rate of 30~40 kg/h. The main compounds in the resulting oils were 9,12‐octadecadienoic acid, 9‐octadecenoic acid, stearic acid, palmitic acid for both types of pumpkin seeds, however, the black seed oil contains more unsaturated fatty acids (UFA) than the white seed oil. On the other hand, some compounds including heptadecanoic acid (0.27%), tetracosanic acid (0.1%), 9‐dodecaenoic acid (0.45%) and pentadecenoic acid (0.05%) were found in white seed oil but not in black seed oil; while eicosanic acid (0.05%), 11,14‐eicosadienoic acid (0.2%), 11‐octadecenoic acid (0.06%), 7‐hexadecenoic acid (0.02%) and 1,12‐tridecadiene (0.02%) were only found in black seed oil.  相似文献   

2.
The objective of this study was to investigate the effects of the main process parameters on supercritical fluid extraction of walnut (Juglans regia L.) kernel oil. The recovery of walnut kernel oil was performed in a green and high-tech separation process. CO2 and CO2 + ethanol mixtures were used as the supercritical solvent. The extraction was carried out at operating pressures of 30, 40 and 50 MPa, operating temperatures of 313, 323 and 333 K, mean particle sizes of 1.78×10−4, 3.03×10−4, 4.78×10−4, 7.00×10−4 and 9.00×10−4 m, supercritical CO2 (SC CO2) flow rates of 1.67×10−8, 3.33×10−8, 6.67×10−8 and 13.33×10−8 m3/s and entrainer (ethanol) concentrations of 2, 4, 8 and 12 vol-%. Maximum extraction yield and oil solubility in SC CO2 obtained at 50 MPa, 333 K, 9.00×10−4 m, 3.33×10−4 m3/h were 0.65 kg oil/kg of dry sample and 37.16 g oil/kg CO2, respectively. The results obtained in this study showed that the crossover pressure effect of walnut kernel oil was at 30 MPa. At 30 MPa and 313 K, the obtained extraction yields above 4 vol-% ethanol reached the organic solvent extraction yield of 68.5 kg oil/kg dry sample. Extraction time was decreased significantly because of the higher solubility of walnut kernel oil in SC CO2 + ethanol mixtures.  相似文献   

3.
Total yields and compositions of sorghum dried distillers grains with solubles (DDGS) lipids obtained by supercritical CO2 (SC‐CO2) extraction were compared with those obtained by recirculated solvent extraction (RSE) with hexane. The total yield of lipids obtained by SC‐CO2 extraction at 27.5 MPa and 70 °C was 150 g lipids/kg DDGS, while the yield obtained by RSE with hexane at 69 °C was only 85 g lipids/kg DDGS. The contents of four high‐value compounds, i.e., policosanols, phytosterols, free fatty acids (FFA) and tocols, in the lipids obtained by SC‐CO2 extraction were 31.2, 15.6, 155.3 and 0.50 mg/g at 27.5 MPa and 70 °C, compared to 26.6, 9.6, 57.3 and 0.03 mg/g for RSE with hexane at 69 °C. The profiles of phytosterols and FFA in the sorghum DDGS lipids were relatively independent of the extraction methods and operating conditions.  相似文献   

4.
BACKGROUND: Microorganisms have often been considered for the production of oils and fats as an alternative to agricultural and animal resources. Extraction experiments were performed using a strain of the yeast Yarrowia lipolytica (Y. lipolytica), a high‐lipid‐content yeast. Three different methods were tested: Soxhlet extraction, accelerated solvent extraction (ASE) and supercritical carbon dioxide (SCCO2) extraction using ethanol as a co‐solvent. Also, high pressure solubility measurements in the systems ‘CO2 + yeast oil’ and ‘CO2 + ethanol + yeast oil’ were carried out. RESULTS: The solubility experiments determined that, at the conditions of the supercritical extractor (40 °C and 20 MPa), a maximum concentration of 10 mg of yeast oil per g of solvent can be expected in pure CO2. 10% w/w of ethanol in the solvent mixture increased this value to almost 15 mg of yeast oil per g of solvent. Different pretreatments were necessary to obtain satisfactory yields in the extraction experiments. The Soxhlet and the ASE method were not able to complete the lipid extraction. The ‘SCCO2 + ethanol’ extraction curves revealed the influence of the different pretreatments on the extraction mechanism. CONCLUSION: Evaluating the effectiveness of a given pretreatment, ASE reduced the amount of material and solvent used compared with Soxhlet. In all three cases, the best total extraction performance was obtained for the ethanol‐macerated yeast (EtM). Addition of ethanol to the solvent mixture enhanced the oil solubility. Oil can be extracted from Y. lipolytica in two different steps: a non‐selective ethanol extraction followed by TAG‐selective SCCO2 purification. © 2012 Society of Chemical Industry  相似文献   

5.
In this work, a combination of sonication and carbon dioxide expanded liquid extraction (SA‐CXLE) is used for the first time for the extraction of lipids from berry seeds. Three solvents (ethanol, methanol and ethyl lactate) are screened for the best recoveries of total lipids. Ethanol is selected due to its efficiency, greenness and sustainability. The effects of operation variables including temperature, time and CO2 molar fraction on extraction performance are examined using a response surface methodology. The optimum conditions were found at 0.37 molar fraction of CO2 in ethanol, a temperature of 52 °C and an extraction time of 7 min for two cycles. The SA‐CXLE method extracts 323 ± 38 mg g?1 seed compared to 194 ± 23 using a conventional solid‐liquid extraction. SA‐CXLE is successfully applied to profile lipids from gooseberry, blackcurrant, chokeberry, red currant, and rowanberry seeds. More than 17 lipid classes are characterized and identified. Gooseberry shows the highest amount of oil of 352 mg g?1 seed. Practical Applications: The developed method provides a fast, efficient and simple approach to extract and profile lipids using a combination of green solvents. Total lipid content and fatty acids composition of the berry seeds are essential information in pharmaceutical, cosmetic, food and nutritional applications.  相似文献   

6.
Response surface methodology was employed to optimize the conditions of supercritical CO2 extraction of the oil from freeze‐dried onion powder. The effects of pressure, temperature and extraction time on the yield of oil were investigated. The maximum extraction yield of 4.69 ± 0.04 g/kg dry basis was achieved at a pressure of 20.6 MPa, a temperature of 40.6 °C, a time of 260 min, a CO2 flow rate of 22 L h–1, and an entrainer ratio of 0.1 mL absolute ethanol per gram dry basis. The chemical composition of the oil was analyzed by gas chromatography‐mass spectrometry. The most representative compounds of the essential oil were organosulfur‐containing compounds and, among these, the main constituents were methyl 5‐methylfuryl sulfide (18.30 %), methyl 3,4‐dimethyl‐2‐thienyl disulfide (11.75 %) and 1‐propenyl propyl disulfide (9.72 %).  相似文献   

7.
In this work we designed and built a homemade supercritical fluid extraction (HM-SFE) system, in which pure CO2 and CO2 with co-solvents were used. The HM-SFE was made by means of thermal dilatation-contraction (TDC). This HM-SFE system was used for obtaining guava (Psidium guajava L.) seed oil, using supercritical CO2 adding ethanol as co-solvent (CO2 SC/EtOH), extractions were performed at 313 K and different pressures (10, 20 and 30 MPa), each one in four stages of 30 min, the extract with higher yield was subjected to transesterification and high-resolution gas chromatography (HRGC) analysis. The highest extraction yield was obtained at 30 MPa (17.30% w/w), this yield was higher than one observed in a previous work using SC-CO2, and near to the one obtained by Soxhlet extraction (20.2% w/w). HRGC enabled the identification of components of the derivatized extract as methyl esters of palmitic, oleic, linoleic, and stearic fatty acids. The results obtained with HM-SFE system was compared with a commercial SFE system, obtained very similar results. In this work was possible to construct a low cost and simple manner HM-SFE system which was employed for obtaining guava seed oil, using CO2 SC/EtOH.  相似文献   

8.
In this study, a novel and environmentally friendly extracting method, supercritical carbon dioxide (SC‐CO2) extraction, was investigated in the thermally induced phase separation (TIPS) process for making microporous membranes. In the SC‐CO2 extraction, the effects of extraction time, pressure, and temperature on the extraction fraction, membrane morphology, and membrane performance were investigated. It was concluded that with extraction conditions of 18 MPa, 35°C and 2 h, the porous membrane had the highest extraction fraction. There was a close relationship between membrane performance and the extraction conditions of SC‐CO2, and it is possible to tailor membrane performance through the choice of extraction conditions. Compared with traditional solvent extraction, a dry membrane treated by SC‐CO2 extraction has much less shrinkage and greater water permeability, whereas the degree of crystallization of a membrane extracted by SC‐CO2 is slightly greater than that extracted by ethanol. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1632–1639, 2007  相似文献   

9.
Red pepper oil was extracted using near- and supercritical carbon dioxide. Extraction was carried out at pressures ranging from 10 to 35 MPa and temperatures from 30 to 60 °C, with a CO2 flow rate of 24.01 g/min using a semi-continuous high-pressure extraction apparatus. The duration for extraction was 2 h. The highest oil yield was found at high pressure and temperature. The highest solubility of oil (1.18 mg/g of CO2) was found at 35 MPa and 60 °C. The solubility data of red pepper oil in near- and supercritical CO2 were fitted in Chrastil model. The fatty acid composition of red pepper oil was analyzed by gas chromatography (GC). Linoleic acid was found to be the major fatty acid in the oil. Capsaicin was quantified in different extracts by high performance liquid chromatography (HPLC). The highest capsaicin yield was found at 35 MPa and 60 °C.  相似文献   

10.
The seed oil of Microula sikkimensis had been intensively studied due to its pharmacological actions. In the present study, seed oil of Microula sikkimensis was extracted using supercritical fluid extraction (SFE). Determinations of the extracts composition were performed by gas chromatography (GC). An orthogonal array design (OAD), OA9 (34), was employed for optimization of the supercritical fluid extraction of the compound with regard to the various parameters. Four factors, namely pressure (21.0–27.0 MPa), the dynamic extraction time, temperature, and CO2 flow rate of the supercritical fluid, were studied and optimized by a three-level OAD. The effects of the parameters on the yield of seed oil were studied using analysis of variance (ANOVA). The results revealed that the pressure had a significant effect on the yield of seed oil (p < 0.05), while the other three factors, i.e., CO2 flow rate, dynamic extraction time and temperature, were not identified as significant factors under the selected conditions based on ANOVA. The results show that the best values for the extraction condition of seed oil was pressure 24.0 MPa, extraction time 3 h, temperature 45 °C and a CO2 flow rate 20 L/h in the 20-L vessel.  相似文献   

11.
Selective extraction of phosphatidylcholine (PC) from deoiled soybean lecithin using supercritical fluid (SCF) mixtures of carbon dioxide (CO2) and ethanol was studied at moderate pressures. Temperature was varied between 60 and 80°C at pressures of 17.2 and 20.7 MPa. Ethanol was added as co-solvent to supercritical CO2 at the levels of 10 and 12.5 wt%. Constant rate of extraction of the individual phospholipids (PL) was observed for 150 min during which the extractions were carried out. Pressure and ethanol fraction had a positive effect on the selective extraction of PC, whereas temperature had a negative effect. Under all the conditions studied, the extracts were mainly composed of PC while the extraction of the other PL was very low. Extraction at 60°C and 20.7 MPa with 10 wt% ethanol/90 wt% CO2 SCF mixture resulted in 95% selectivity to PC.  相似文献   

12.
The extraction of oil from fixed beds of canola seed (Brassica napus) was studied using carbon dioxide at temperatures and pressures ranging from 25 to 90°C and 10 to 36 MPa, respectively. The oil solubility in CO2 was found to be strongly dependent on CO2 pressure and weakly dependent on the system temperature. The highest observed oil solubility was 11 mg/g CO2 and occurred at 36 MPa and 55°C. The manner in which different methods of seed pretreatment (flaking, cooking, pressure rupturing, chopping and crushing) affected the extraction process also was studied. The total amount of oil recovered from the seeds by CO2 extraction was found to be strongly dependent on the pretreatment. No measurable quantity of oil chould be recovered from whole, intact seeds. The amount of oil extractable from flaked and cooked seeds was comparable to that recoverable by conventional hexane extraction.  相似文献   

13.
In this study, Camellia oil is co-extracted from Camellia oleifera seeds and green tea scraps by supercritical carbon dioxide (SC-CO2), which is optimized on the extraction yield, ABTS-scavenging activity, and total polyphenols content (TPC) of oil by single-factor experiments combined with response surface methodology (RSM). The extraction temperature, pressure, dynamic time, carbon dioxide (CO2) flow rate, and seed mass ratio were investigated with single-factor experiments. The results indicated the optimum CO2 flow rate and dynamic extraction time were 15 L hour−1 and 60 min (i.e., 2.382 kg CO2/100 g sample). Furthermore, the complicated effects of extraction temperature (40–50 °C), pressure (20–30 MPa), and seed mass ratio (0.25–0.75) were optimized by RSM based on the Box–Behnken design (BBD). The models with high R-squared values were obtained and used to predict the optimum operating conditions of the process. Under the optimum operating conditions (i.e., temperature of 46 °C, pressure of 30 MPa, and seed mass ratio of 0.35), the extraction yield, ABTS-scavenging activity, and TPC of oil were 14.43 ± 0.17 g/100 g sample, 73.70 ± 0.34%, and 2.18 ± 0.05 mg GAE/g oil, which were in good agreement with the predicted values. In addition, the experiments indicated that the Camellia oil obtained was rich in polyphenols, resulting in better oxidation stability and antioxidant activity than the original oil.  相似文献   

14.
Extraction of rice brain oil using supercritical carbon dioxide and propane   总被引:1,自引:0,他引:1  
Extraction of rice bran lipids was performed using supercritical carbon dioxide (SC−CO2) and liquid propane. To provide a basis for extraction efficiency, accelerated solvent extraction with hexane was performed at 100°C and 10.34 MPa. Extraction pressure was varied for propane and SC−CO2 extractions. Also, the role of temperature in SC−CO2 extraction efficiency was investigated at 45,65, and 85°C. For the SC−CO2 experiments, extraction efficiencies were proportional to pressure and inversely proportional to temperature, and the maximal yield of oil achieved using SC−CO2 was 0.222±0.013 kg of oil extracted per kg of rice bran for conditions of 45°C and 35 MPa. The maximal yield achieved with propane was 0.224±0.016 kg of oil per kg of rice bran at 0.76 MPa and ambient temperature. The maximum extraction efficiencies of both SC−CO2 and propane were found to be significantly different from the hexane extraction baseline yield, which was 0.261±0.005 kg oil extracted per kg of rice bran. A simulated economic analysis was performed on the possibility of using SC−CO2 and propane extraction technologies to remove oil from rice bran generated in Mississippi. Although the economic analysis was based on the maximal extraction efficiency for each technology, neither process resulted in a positive rate of return on investment.  相似文献   

15.
《分离科学与技术》2012,47(5):1091-1110
Abstract

High pressure liquid extraction (HPE) and subcritical fluid (CO2+ethanol) extraction (SCE) were used for the extraction of total phenolic compounds (TPC) from sour cherry pomace. Antiradical efficiency (AE) of the extracts was also determined. Ethanol was the solvent for HPE and co‐solvent for SCE. Combinations of pressure (50, 125, 200 MPa), temperature (20, 40, 60°C), solid/solvent ratio (0.05, 0.15, 0.25 g/ml) and extraction time (10, 25, 40 min) were variables for HPE according to the Box‐Behnken experimental design. The variables used for SCE were pressure (20, 40, 60 MPa), temperature (40, 50, 60°C), ethanol concentration (14, 17, 20 wt%) and extraction time (10, 25, 40 min). For HPE, TPC, and AE at the optimum conditions (176–193 MPa, 60°C, 0.06–0.07 g solid/ml solvent, 25 min) were found as 3.80 mg gae/g sample and 22 mg DPPH?/g sample, respectively. TPC and AE at the optimum conditions (54.8–59 MPa, 50.6–54.4°C, 20 wt% ethanol, 40 min) for SCE were determined as 0.60 mg gae/g sample and 2.30 mg DPPH?/g sample for sour cherry pomace, respectively.  相似文献   

16.
Rosehip seeds were milled, sieved, and extracted with 26.3 g/g substrate/h of supercritical carbon dioxide (CO2) at 40°C and 300 bar. The extraction kinetics were characterized by an initial solubility-controlled period (8.78 g oil/kg CO2 at 40°C and 300 bar), followed by a transition period to a final mass transfer-controlled process. The integral yield of oil approached an asymptotic value that was dependent on the particle size of the substrate: 57.1 g oil/kg dry oil-free substrate (large particles), 171.0 g/kg (medium-size particles), or 391.5 g/kg (small particles). Based on gravimetric determinations and microscopic analysis, our size-classification process segregated seed parts having different oil contents. Particles ≥0.85 mm were mainly composed of tough, lignified testa fragments devoid of oil, whereas particles ≤0.425 mm contained mostly brittle, oil-rich germ fragments. The segregation of seed in fractions with different oil contents may be a common occurrence in supercritical extraction experiments, especially for seeds with thick and/or hard testa and small germ, whose fractions can be separated by sieving.  相似文献   

17.
A novel continuous subcritical n‐butane extraction technique for Camellia seed oil was explored. The fatty acid composition, physicochemical properties, and benzo[a]pyrene content of Camellia seed oil extracted using this subcritical technique were analyzed. Orthogonal experiment design (L9(34)) was adopted to optimize extraction conditions. At a temperature of 45 °C, a pressure of 0.5 MPa, a time of 50 min and a bulk density of 0.7 kg/L, an extraction yield of 99.12 ± 0.20 % was obtained. The major components of Camellia seed oil are oleic acid (73.12 ± 0.40 %), palmitic acid (10.38 ± 0.05 %), and linoleic acid (9.15 ± 0.03 %). Unsaturated fatty acids represent 83.78 ± 0.03 % of the total fatty acids present. Eight physicochemical indexes were assayed, namely, iodine value (83.00 ± 0.21 g I/100 g), saponification value (154.81 ± 2.00 mg KOH/g), freezing‐point (?8.00 ± 0.10 °C), unsaponifiable matter (5.00 ± 0.40 g/kg), smoke point (215.00 ± 1.00 °C), acid value (1.24 ± 0.03 mg KOH/g), refrigeration test (transparent, at 0 °C for 5.5 h), and refractive index (1.46 ± 0.06, at 25 °C). Benzo[a]pyrene was not detected in Camellia seed oil extracted by continuous subcritical n‐butane extraction. In comparison, the benzo[a]pyrene levels of crude Camellia seed oil extracted by hot press extraction and refined Camellia seed oil were measured at 26.55 ± 0.70 and 5.69 ± 0.04 μg/kg respectively.  相似文献   

18.
Sunflower (Helianthus annuus L.) seed represents an important source for edible oil and its protein fraction is also recognised as valuable for human consumption when suitably purified from polyphenols, which negatively affect colour and nutritional value. On this basis, a main research has been developed, with the aim of testing the technical feasibility of a supercritical fluid extraction (SFE) process involving a preliminary supercritical CO2 (SC‐CO2) extraction of oil from sunflower de‐hulled seeds, followed by the removal of polyphenols from de‐fatted meal by means of ethanol coupled with SC‐CO2. The paper reports the experimental protocol followed, together with the kinetics of the extractions, knowledge of which allows the optimisation of working parameters and the determination of process yields.  相似文献   

19.
Kinetics and selectivity of supercritical carbon dioxide (SC CO2) extraction of Helichrysum italicum flowers were analyzed at pressures in the range of 10-20 MPa and temperatures of 40 °C and 60 °C (density of SC CO2 from 290 to 841 kg/m3) and also at 10 MPa and 40 °C using flowers with different moisture contents (10.5% and 28.4%). Increased moisture content of H. italicum flowers resulted in enchased solubility of solute enabling decrease of SC CO2 consumption necessary for achieving desired extraction yield. The most abundant compounds in the supercritical extracts are sesquiterpenes and waxes while monoterpenes and sesquiterpenes are the main constituents of essential oil obtained by hydrodistillation. The optimal set of working parameters with respect to extraction yield, SC CO2 consumption and chemical composition of extract were defined related to moisture content of raw material and SC CO2 density.  相似文献   

20.
Extraction of chia seed oil was performed with supercritical carbon dioxide (SC-CO2). To investigate the effects of pressure and temperature on the oil solubility and yield, two isobaric (250 and 450 bar) and two isothermal (40 and 60 °C) extraction conditions were selected. The global extraction yield of chia oil increased with pressure enhancement, but temperature had a little influence on it. The maximum oil recovery using SC-CO2 at a mass flow rate of 8 kg/h was 97%, which was obtained at 60 °C, 450 bar for a 138-min extraction. The results showed that solubility changed from 4.8 g oil/kg CO2 at 60 °C–250 bar to 28.8 g oil/kg CO2 at 60 °C–450 bar. The final extract obtained by SC-CO2 under different conditions and Soxhlet extraction contained mainly α-linolenic (64.9–65.6%) and linoleic (19.8–20.3%) acids. SC-CO2 extraction is an interesting alternative methodology because it is possible to achieve a chia oil yield close to that obtained by conventional extraction with a similar fatty acid composition using an environmentally friendly process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号