首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We analyse robustness of nonlocal correlation in multiqubit entangled states—three- and four-qubit GHZ class and three-qubit W class—useful for quantum information and computation, under noisy conditions and weak measurements. For this, we use a Bell-type inequality whose violation is considered as a signature for confirming the presence of genuine nonlocal correlations between the qubits. In order to demonstrate the effects of noise and weak measurements, an analytical relation is established between the maximum expectation value of three and four-qubit Svetlichny operators for the systems under study, noise parameter and strengths of weak measurements. Our results show that for a set of three- and four-qubit GHZ class states, maximal nonlocality does not coincide with maximum entanglement for a given noise parameter and a certain range of weak measurement parameter. Our analysis further shows an excellent agreement between the analytical and numerical results.  相似文献   

2.
Ran  Qiwen  Wang  Ling  Ma  Jing  Tan  Liying  Yu  Siyuan 《Quantum Information Processing》2018,17(8):1-24

We investigate in detail the dynamics of decoherence, free and bound entanglements, and the conversion from one to another (quantum state transitions), in a two non-interacting qutrits system initially entangled and subject to independents or a common classical noise. Both Markovian and non-Markovian environments are considered. Furthermore, isotropic and bound entangled states for qutrits systems are considered as initial states. We show the efficiency of the formers over the latters against decoherence, and in preserving quantum entanglement. The loss of coherence increases monotonically with time up to a saturation value depending upon the initial state parameter and is stronger in a collective Markov environment. For the non-Markov regime the presence or absence of entanglement revival and entanglement sudden death phenomena is deduced depending on both the peculiar characteristics of the noise, the physical setup and the initial state of the system. We demonstrate distillability sudden death for conveniently selected parameters in bound entangled states; meanwhile, it is completely absent for isotropic states, where entanglement sudden death is avoided for dynamic noise independently of the noise regime and the physical setup. Our results indicate that distillability sudden death under the Markov/non-Markov noise considered can be avoided depending upon the physical setup.

  相似文献   

3.
Continuing on the recent observation that sudden death of entanglement can occur even when a single qubit of a 2-qubit state is exposed to noisy environment (Yashodamma and Sudha in Results Phys 3:41–45, 2013), we examine the local action of a noise on bipartite qubit–qutrit and qutrit–qutrit systems. We show that depolarizing noise causes sudden death of entanglement in both qubit–qutrit and qutrit–qutrit systems even when it acts only on one part of the system. While generalized amplitude damping noise also causes finite-time disentanglement in qubit–qutrit states, the entanglement sudden death occurs much faster due to depolarizing noise. This result strengthens the observation (Yashodamma and Sudha in Results Phys 3:41–45, 2013) that depolarizing noise is more effective than other noise models in causing sudden death of entanglement.  相似文献   

4.
In this work, we mainly analyze the dynamics of geometric quantum discord under a common dissipating environment. Our results indicate that geometric quantum discord is generated when the initial state is a product state. The geometric quantum discord increases from zero to a stable value with the increasing time, and the variations of stable values depend on the system size. For different initial product states, geometric quantum discord has some different behaviors in contrast with entanglement. For initial maximally entangled state, it is shown that geometric quantum discord decays with the increasing dissipated time. It is found that for EPR state, entanglement is more robust than geometric quantum discord, which is a sharp contrast to the existing result that quantum discord is more robust than entanglement in noisy environments. However, for GHZ state and W state, geometric quantum discord is more stable than entanglement. By the comparison of quantum discord and entanglement, we find that a common dissipating environment brings complicated effects on quantum correlation, which may deepen our understanding of physical impacts of decohering environment on quantum correlation. In the end, we analyze the effects of collective dephasing noise and rotating noise to a class of two-qubit X states, and we find that quantum correlation is not altered by the collective noises.  相似文献   

5.
Concurrence, as one of the entanglement measures, is a useful tool to characterize quantum entanglement in various quantum systems. However, the computation of the concurrence involves difficult optimizations and only for the case of two qubits, an exact formula was found. We investigate the concurrence of four-qubit quantum states and derive analytical lower bound of concurrence using the multiqubit monogamy inequality. It is shown that this lower bound is able to improve the existing bounds. This approach can be generalized to arbitrary qubit systems. We present an exact formula of concurrence for some mixed quantum states. For even-qubit states, we derive an improved lower bound of concurrence using a monogamy equality for qubit systems. At the same time, we show that a multipartite state is k-nonseparable if the multipartite concurrence is larger than a constant related to the value of k, the qudit number and the dimension of the subsystems. Our results can be applied to detect the multipartite k-nonseparable states.  相似文献   

6.
We study bipartite entangled states in arbitrary dimensions and obtain different bounds for the entanglement measures in terms of teleportation fidelity. We find that there is a simple relation between negativity and teleportation fidelity for pure states, but for mixed states, an upper bound is obtained for negativity in terms of teleportation fidelity using convex-roof extension negativity. However, with this, it is not clear how to distinguish between states useful for teleportation and positive partial transpose (PPT) entangled states. Further, there exists a strong conjecture in the literature that all PPT entangled states, in $3 \otimes 3$ systems, have Schmidt rank two. This motivates us to develop measures capable of identifying states useful for teleportation and dependent on the Schmidt number. We thus establish various relations between teleportation fidelity and entanglement measures depending upon Schmidt rank of the states. These relations and bounds help us to determine the amount of entanglement required for teleportation, which we call the “Entanglement of Teleportation.” These bounds are used to determine the teleportation fidelity as well as the entanglement required for teleportation of states modeled by a two-qutrit mixed system, as well as two-qubit open quantum systems.  相似文献   

7.
Entanglement is a global characteristic unique to quantum states that depends on quantum coherence and may allow one to carry out communications and information processing tasks that are either impossible or less efficient using classical states. Because environmental noise, even when entirely local in spatial extent, can fully destroy entanglement in finite time, an effect referred to as “entanglement sudden death” (ESD), it may threaten quantum information processing tasks. Although it may be possible to “distill” entanglement from a collection of noise-affected systems under appropriate circumstances, once entanglement has been completely lost no amount of distillation can recover it. It is therefore extremely important to avoid its complete destruction in times comparable to those of information processing tasks. Here, the effect of local noise on a class of entangled states used in entanglement-based quantum key distribution is considered and the threat ESD might pose to it is assessed.  相似文献   

8.
We have proposed a scheme of the generation and preservation of two-qubit steady-state quantum correlations through quantum channels where successive uses of the channels are correlated. Different types of noisy channels with memory, such as amplitude damping, phase damping, and depolarizing channels, have been taken into account. Some analytical or numerical results are presented. The effect of channels with memory on dynamics of quantum correlations has been discussed in detail. The results show that steady-state entanglement between two initial qubits whose initial states are prepared in a specific family states without entanglement subject to amplitude damping channel with memory can be generated. The entanglement creation is related to the memory coefficient of channel \(\mu \). The stronger the memory coefficient of channel \( \mu \) is, the more the entanglement creation is, and the earlier the separable state becomes the entangled state. Besides, we compare the dynamics of entanglement with that of quantum discord when a two-qubit system is initially prepared in an entangled state. We show that entanglement dynamics suddenly disappears, while quantum discord dynamics displays only in the asymptotic limit. Furthermore, two-qubit quantum correlations can be preserved at a long time in the limit of \(\mu \rightarrow 1\).  相似文献   

9.
We calculate the two-qubit disentanglement due to classical random telegraph noise using the quasi-Hamiltonian method. This allows us to obtain analytical results even for strong coupling and mixed noise, important when the qubits have tunable working point. We determine when entanglement sudden death and revival occur as functions of qubit working point, noise coupling strength and initial state entanglement. For extended Werner states, we show that the concurrence is related to the difference of two functions: one is related to dephasing and the other longitudinal relaxation. A physical interpretation based on the generalized Bloch vector is given: revival only occurs for strongly-coupled noise and comes from the angular motion of the vector.  相似文献   

10.
We consider the possibility of generation steerable states in Bose–Hubbard system composed of three interacting wells in the form of a triangle. We show that although our system still fulfills the monogamy relations, the presence of additional coupling which transforms a chain of wells onto triangle gives a variety of new possibilities for the generation of steerable quantum states. Deriving analytical formulas for the parameters describing steering and bipartite entanglement, we show that interplay between two couplings influences quantum correlations of various types. We compare the time evolution of steering parameters to those describing bipartite entanglement and find the relations between the appearance of maximal entanglement and disappearance of steering effect.  相似文献   

11.
Using negativity and realignment criterion as quantifiers of free and bound entanglements respectively, we present in details the analytical study of the entanglements and quantum states transitions dynamics in a two-qutrit system driven by dephasing random telegraph noise channel(s). Both collective and independent system–environment couplings as well as the Markovian and the non-Markovian regimes of the noise channel(s) are considered. Two non-equivalent initial states and their locally equivalent through a local unitary operation (LUO) are also considered. We demonstrate a stronger entanglement under independent Markovian environments than with a collective one; meanwhile, for the non-Markovian regime, entanglement is stronger under a collective environment than with independent ones. States transitions as well as the (re)activation of bound entanglement (for initially free entangled states) can be found for a specific class of initial states, but can, however, be avoided by means of a LUO on the initial state. While unavoidable disentanglement occurs for independents coupling, we demonstrate the possibility of indefinite free entanglement survival in the qutrit system under a common environment by converting the initial entangled state using the local unitary operation.  相似文献   

12.
We consider explicitly two examples of d-dimensional quantum channels with correlated noise and show that, in agreement with previous results on Pauli qubit channels, there are situations where maximally entangled input states achieve higher values of the output mutual information than product states. We obtain a strong dependence of this effect on the nature of the noise correlations as well as on the parity of the space dimension, and conjecture that when entanglement gives an advantage in terms of mutual information, maximally entangled states achieve the channel capacity.  相似文献   

13.
We investigate some properties of the entanglement of hypergraph states in purely hypergraph theoretical terms. We first introduce an approach for computing local entropic measure on qubit $t$ of a hypergraph state by using the Hamming weight of the so-called $t$ -adjacent subhypergraph. Then, we quantify and characterize the entanglement of hypergraph states in terms of local entropic measures obtained by using the above approach. Our results show that full-rank hypergraph states of more than two qubits can not be converted into any graph state under local unitary transformations.  相似文献   

14.
Studies on two-particle quantum walks show that the spatial interaction between walkers will dynamically generate complex entanglement. However, those entanglement states are usually on a large state space and their evolutions are complex. It makes the entanglement states generated by quantum walk difficult to be applied directly in many applications of quantum information, such as quantum teleportation and quantum cryptography. In this paper, we firstly analyse a localization phenomena of two-particle quantum walk and then introduce how to use it to generate a Bell state. We will show that one special superposition component of the walkers’ state is localized on the root vertex if a certain interaction exists between walkers. This localization is interesting because it is contrary to our knowledge that quantum walk spreads faster than its classical counterpart. More interestingly, the localized component is a Bell state in the coin space of two walkers. By this method, we can obtain a Bell state easily from the quantum walk with spatial interaction by a local measurement, which is required in many applications. Through simulations, we verify that this method is able to generate the Bell state \(\frac{1}{\sqrt{2}}(|A \rangle _1|A\rangle _2 \pm |B\rangle _1|B\rangle _2)\) in the coin space of two walkers with fidelity greater than \(99.99999\,\%\) in theory, and we have at least a \(50\,\%\) probability to obtain the expected Bell state after a proper local measurement.  相似文献   

15.
Transmission of quantum entanglement will play a crucial role in future networks and long-distance quantum communications. Quantum key distribution, the working mechanism of quantum repeaters and the various quantum communication protocols are all based on quantum entanglement. On the other hand, quantum entanglement is extremely fragile and sensitive to the noise of the communication channel over which it has been transmitted. To share entanglement between distant points, high fidelity quantum channels are needed. In practice, these communication links are noisy, which makes it impossible or extremely difficult and expensive to distribute entanglement. In this work, we first show that quantum entanglement can be generated by a new idea, exploiting the most natural effect of the communication channels: the noise itself of the link. We prove that the noise transformation of quantum channels that are not able to transmit quantum entanglement can be used to generate distillable (useable) entanglement from classically correlated input. We call this new phenomenon the Correlation Conversion property of quantum channels. The proposed solution does not require any non-local operation or local measurement by the parties, only the use of standard quantum channels. Our results have implications and consequences for the future quantum communications and for global-scale quantum communication networks. The discovery also revealed that entanglement generation by local operations is possible.  相似文献   

16.
We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger–Horne–Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.  相似文献   

17.
A master equation has been constructed for a global system–bath interaction in the both absence and presence of non-Markovian noise. For the memoryless case, it has been exactly solved for a paradigmatic class of two qubit states in high- and zero-temperature thermal environment. For the non-Markovian model, it has been solved for zero-temperature bath. The evolution of quantum coherence and entanglement has been observed in the presence of the above-mentioned interactions. We show that the global part of the system–bath interaction compensates for the decoherence, resulting in slowdown of coherence and entanglement decay. For an appropriately defined limiting case, both coherence and entanglement show freezing behavior for the high-temperature bath. In case of zero-temperature bath, the mentioned interaction not only stabilizes the non-classical correlations, but also enhances them for a finite period. For the memory-dependent case, we have seen that the global interaction enhances the backflow of information from environment to the system, as it enhances the regeneration of coherence and entanglement. Also we have studied the generation of quantum Fisher information by the mentioned process. An intuitive measure of non-classicality based on non-commutativity of quantum states has been considered. Bounds on generated quantum Fisher information have been found in terms of quantumness and coherence. This gives us a novel understanding of quantum Fisher information as a measure of non-classicality.  相似文献   

18.
We present a method to quantify quantum correlations in arbitrary systems of indistinguishable fermions using witness operators. The method associates the problem of finding the optimal entanglement witness of a state with a class of problems known as semidefinite programs, which can be solved efficiently with arbitrary accuracy. Based on these optimal witnesses, we introduce a measure of quantum correlations which has an interpretation analogous to the Generalized Robustness of entanglement. We also extend the notion of quantum discord to the case of indistinguishable fermions, and propose a geometric quantifier, which is compared to our entanglement measure. Our numerical results show a remarkable equivalence between the proposed Generalized Robustness and the Schliemann concurrence, which are equal for pure states. For mixed states, the Schliemann concurrence presents itself as an upper bound for the Generalized Robustness. The quantum discord is also found to be an upper bound for the entanglement.  相似文献   

19.
We study on the tripartite entanglement dynamics when each party is initially entangled with other parties, but they locally interact with their own Markovian or non-Markovian environment. First we consider three GHZ-type initial states, all of which have GHZ-symmetry provided that the parameters are chosen appropriately. However, this symmetry is broken due to the effect of environment. The corresponding \(\pi \)-tangles, one of the tripartite entanglement measures, are analytically computed at arbitrary time. For Markovian case while the tripartite entanglement for type I exhibits an entanglement sudden death, the dynamics for the remaining cases decays normally in time with the half-life rule. For non-Markovian case the revival phenomenon of entanglement occurs after complete disappearance of entanglement. We also consider two W-type initial states. For both cases the \(\pi \)-tangles are analytically derived. The revival phenomenon also occurs in this case. On the analytical ground the robustness or fragility issue against the effect of environment is examined for both GHZ-type and W-type initial states.  相似文献   

20.
In this article, we study the entanglement properties of two-qubit quantum states based on concurrence using the graph-theoretic approach. Entanglement properties of a density operator are obtained from the combinatorial Laplacian matrix which is constructed for a given graph. In the study of entanglement, we found that measure of entanglement is either \( \frac{1}{ |{E}| } \) or zero for simple graphs. We further propose a simple method to evaluate the three-tangle and analyze inequivalent classes belonging to three-qubit pure states using graph-theoretic perspective. Our results allow a clear distinction between three-qubit separable states, genuinely entangled Greenberger–Horne–Zeilinger and W states, purely based on graphical interpretations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号