首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An efficient method is proposed for the generation and swapping of multi-qubit entangled state in an array of linearly coupled superconducting resonators, each of which is coupled to N superconducting qubits. With the external driving fields to adjust the desired qubit–resonator interaction, we firstly show that the multipartite entangled state of superconducting qubits hosted in two nearest-neighbor interacting resonators can be deterministically realized. Furthermore, by utilizing the produced entangled state, we put forward a protocol for the swapping of quantum entangled state in the coupled resonator array based on measurement, i.e., the multi-particle entangled state can be achieved for the qubits in long-distance separated resonators. The numerical simulation suggests that our scheme is feasible with current circuit QED technology.  相似文献   

2.
Scalability from single-qubit operations to multi-qubit circuits for quantum information processing requires architecture-specific implementations. Semiconductor hybrid qubit architecture is a suitable candidate to realize large-scale quantum information processing, as it combines a universal set of logic gates with fast and all-electrical manipulation of qubits. We propose an implementation of hybrid qubits, based on Si metal-oxide-semiconductor (MOS) quantum dots, compatible with the CMOS industrial technological standards. We discuss the realization of multi-qubit circuits capable of fault-tolerant computation and quantum error correction, by evaluating the time and space resources needed for their implementation. As a result, the maximum density of quantum information is extracted from a circuit including eight logical qubits encoded by the [[7, 1, 3]] Steane code. The corresponding surface density of logical qubits is 2.6 Mqubit/cm\(^2\).  相似文献   

3.
Cavity-based large-scale quantum information processing (QIP) needs a large number of qubits, and placing all of them in a single cavity quickly runs into many fundamental and practical problems such as the increase in cavity decay rate and decrease in qubit-cavity coupling strength. Therefore, future QIP most likely will require quantum networks consisting of a large number of cavities, each hosting and coupled to multiple qubits. In this work, we propose a way to prepare a $W$ -class entangled state of spatially separated multiple qubits in different cavities, which are connected to a coupler qubit. Because no cavity photon is excited, decoherence caused by the cavity decay is greatly suppressed during the entanglement preparation. This proposal needs only one coupler qubit and one operational step, and does not require using a classical pulse, so that the engineering complexity is much reduced and the operation is greatly simplified. As an example of the experimental implementation, we further give a numerical analysis, which shows that high-fidelity generation of the $W$ state using three superconducting phase qubits each embedded in a one-dimensional transmission line resonator is feasible within the present circuit QED technique. The proposal is quite general and can be applied to accomplish the same task with other types of qubits such as superconducting flux qubits, charge qubits, quantum dots, nitrogen-vacancy centers, and atoms.  相似文献   

4.
A theoretical scheme is proposed to transfer quantum state with a two-dimensional Cooper-pair box qubit array in circuit QED devices, in which coplanar transmission line resonators play the role of a quantum data bus. Based on the Raman transitions, the resonator-assisted quantum state transfer between any selected pair of qubits can be performed by addressing the local gate pulses. Thus the scheme may offer an effective route towards scalable quantum state transfer with superconducting qubits.  相似文献   

5.
Based on the quantum Zeno dynamics, a scheme is presented to implement a Toffoli gate of three separated superconducting qubits (SQs) by one step. Three separated SQs are connected by two resonators. The scheme is insensitive to the resonator decay because the Zeno subspace does not include the state of the resonators being excited. Numerical simulations indicate that the scheme is robust to the fluctuation of the parameters and the Toffoli gate can be implemented with high fidelity.  相似文献   

6.
A Physical Error Estimation Tool (PEET) is introduced in Matlab for predicting physical gate errors of quantum information processing (QIP) operations by constructing and then simulating gate sequences for a wide variety of user-defined, Hamiltonian-based physical systems. PEET is designed to accommodate the interdisciplinary needs of quantum computing design by assessing gate performance for users familiar with the underlying physics of QIP, as well as those interested in higher-level computing operations. The structure of PEET separates the bulk of the physical details of a system into Gate objects, while the construction of quantum computing gate operations are contained in GateSequence objects. Gate errors are estimated by Monte Carlo sampling of noisy gate operations. The main utility of PEET, though, is the implementation of QuantumControl methods that act to generate and then test gate sequence and pulse-shaping techniques for QIP performance. This work details the structure of PEET and gives instructive examples for its operation.  相似文献   

7.
Explicit controlled-NOT gate sequences between two qubits of different types are presented in view of applications for large-scale quantum computation. Here, the building blocks for such composite systems are qubits based on the electrostatically confined electronic spin in semiconductor quantum dots. For each system the effective Hamiltonian models expressed by only exchange interactions between pair of electrons are exploited in two different geometrical configurations. A numerical genetic algorithm that takes into account the realistic physical parameters involved is adopted. Gate operations are addressed by modulating the tunneling barriers and the energy offsets between different couple of quantum dots. Gate infidelities are calculated considering limitations due to unideal control of gate sequence pulses, hyperfine interaction and charge noise.  相似文献   

8.
We propose a new formulation of quantum algorithm which allows to distribute amplitudes over two copies of small quantum subsystems. The new method gives a fixed number of copies and applied to the control of multi-qubit system. The analysis for the amount of error due to the distribution process has been presented for a system of 10 qubits with a small quantum subsystems to be copied. The present scheme provides a new way to distribute amplitudes over small quantum subsystems.  相似文献   

9.
We propose a new scheme to implement gate operations in a one dimensional linear nearest neighbor array, by using dynamic learning algorithm. This is accomplished by training quantum system using a back propagation technique, to find the system parameters that implement gate operations directly. The key feature of our scheme is that, we can reduce the computational overhead of a quantum circuit by finding the parameters to implement the desired gate operation directly, without decomposing them into a sequence of elementary gate operations. We show how the training algorithm can be used as a tool for finding the parameters for implementing controlled-NOT (CNOT) and Toffoli gates between next-to-nearest neighbor qubits in an Ising-coupled linear nearest neighbor system. We then show how the scheme can be used to find parameters for realizing swap gates first, between two adjacent qubits and then, between two next-to-nearest-neighbor qubits, in each case without decomposing it into 3 CNOT gates. Finally, we show how the scheme can be extended to systems with non-diagonal interactions. To demonstrate, we train a quantum system with Heisenberg interactions to find the parameters to realize a swap operation.  相似文献   

10.
Blind Quantum Source Separation (BQSS) deals with multi-qubit states, called “mixed states”, obtained by applying an unknown “mixing function” (which typically corresponds to undesired coupling, e.g. between qubits implemented as close electron spins 1/2) to unknown multi-qubit “source states”, which are product states (and pure in the simplest case, considered in this paper). Some other properties are also possibly requested from these source states and/or mixing function. Using mixed states, BQSS systems aim at restoring (the information contained in) source states, during the second phase of their operation (“inversion phase”). To this end, they estimate the unmixing function (inverse of mixing function), during the first phase of their operation (“adaptation phase”). Most previously reported BQSS systems first convert mixed states into classical-form data, that they then process with classical means. Besides, they estimate the unmixing function by using statistical methods related to classical Independent Component Analysis. On the contrary, the new BQSS systems proposed here use only quantum-form data and quantum processing in the inversion phase, and they use classical-form data during the adaptation phase only. Moreover, their unmixing function estimation methods are essentially based on using unentangled source states during that phase. They mainly consist of disentangling the output quantum state of the separating system (for a few source states). Afterwards, they can also restore entangled source states. They yield major improvements over previous systems, concerning restored source parameters, associated indeterminacies and approximations, number of source states required for adaptation, numbers of source state preparations in adaptation and inversion phases. Numerical tests confirm that they accurately restore quantum source states.  相似文献   

11.
We discuss the implementation of quantum gate operations in a self-assembled dipolar crystal of polar molecules. Here qubits are encoded in long-lived spin states of the molecular ground state and stabilized against collisions by repulsive dipole–dipole interactions. To overcome the single site addressability problem in this high density crystalline phase, we describe a new approach for implementing controlled single and two-qubit operations based on resonantly enhanced spin–spin interactions mediated by a localized phonon mode. This local mode is created at a specified lattice position with the help of an additional marker molecule such that individual qubits can be manipulated by using otherwise global static and microwave fields only. We present a general strategy for generating state and time dependent dipole moments to implement a universal set of gate operations for molecular qubits and we analyze the resulting gate fidelities under realistic conditions. Our analysis demonstrates the experimental feasibility of this approach for scalable quantum computing or digital quantum simulation schemes with polar molecules.  相似文献   

12.
在处理某些大规模并行问题时,量子计算因量子位独特的叠加态和纠缠态特性,相比经典计算机在并行处理方面具有更明显的优势。现阶段,物理量子比特计算机受限于可扩展性、相干时间和量子门操作精度,在经典计算机上开展量子计算模拟成为研究量子优越性和量子算法的有效途径。然而,随着量子比特数的增加,模拟所需的计算机资源呈指数增长。因此,研究大规模量子计算模拟在保证计算准确度、精度及效率的情况下减少模拟所需资源具有重要意义。从量子比特、量子门、量子线路、量子操作系统等方面展开,阐述量子计算的基本原理和背景知识。同时总结基于经典计算机的量子计算模拟基本方法,分析不同方法的设计思路和优缺点,列举目前常见的量子计算模拟器。在此基础上,针对量子计算模拟的通信开销问题,从节点拆分和通信优化2个方面出发,讨论基于超级计算机集群的量子计算模拟优化方法。  相似文献   

13.
14.
基于量子门线路的量子神经网络模型及算法   总被引:2,自引:0,他引:2  
提出一种量子神经网络模型及算法.该模型为一组量子门线路.输入信息用量子位表示,经量子旋转门进行相位旋转后作为控制位,控制隐层量子位的翻转;隐层量子位经量子旋转门进行相位旋转后作为控制位,控制输出层量子位的翻转.以输出层量子位中激发态的概率幅作为网络输出,基于梯度下降法构造了该模型的学习算法.仿真结果表明,该模型及算法在收敛能力和鲁棒性方面均优于普通BP网络.  相似文献   

15.
We present an innovative and extremely efficient scheme to share an arbitrary multi-qubit state between n agents with only 1 GHZ channel under control of m agents in a network. Compared with existing ones in this literature, our scheme requires less communication resources, least qubits and only three physical favorable simple operations (single-qubit measurement, Bell-basis measurement and CNOT gate operations) are included, leading to a higher overall efficiency.  相似文献   

16.
We propose a new scheme for implementing gate operations between remote qubits in linear nearest neighbor (LNN) architectures, one that does not require qubits to be adjacent to each other in order to perform a gate operation between them. The key feature of our scheme is a new two-control, one-target controlled-unitary gate operation, which we refer to as the C2(?I) gate. The gate operation can be implemented easily in a single step, requiring only a single control parameter of the system Hamiltonian. Using the C2(?I) gate, we show how to implement CNOT gate operations between remote qubits that do not have any direct coupling between them, along an LNN array. Since this is achieved without requiring swap operations or additional ancilla qubits in the circuit, the quantum cost of our circuit can be more than 50 % lower than those using conventional swap methods. All CNOT gate operations between remote qubits can be achieved with fidelity greater than 99.5 %.  相似文献   

17.
We present a scheme to generate the Bell state deterministically on remote transmon qubits coupled to different 1D superconducting resonators connected by a long superconducting transmission line. Using the coherent evolution of the entire system in the all-resonance regime, the transmission line need not to be populated with microwave photons which can robust against the long transmission line loss. This lets the scheme more applicable to the distributed quantum computing on superconducting quantum circuit. Besides, the influence from the small anharmonicity of the energy levels of the transmon qubits can be ignored safely.  相似文献   

18.
A scheme is proposed to implement two-qubit controlled quantum phase gate and SWAP gate and generate two-qubit entangled state via long-range off-resonant Raman coupling between two spatially separated superconducting quantum-interference devices (SQUIDs). In the scheme each SQUID is coupled with a single-mode cavity individually and the two distant cavities are connected by an optical fiber. The two lowest levels of each SQUID are used to represent the two logical states of a qubit while the two intermediate levels of each SQUID are used to facilitate coherent coupling of quantum states of the qubits during the virtual excitation process of photon. The scheme is robust against fiber loss, cavity decay, and the effect of spontaneous decay from the higher levels and it would be an important step toward distributed quantum computation and long-distance entanglement distribution.  相似文献   

19.
We discuss the basic aspects of quantum information processing with trapped ions, including the principles of ion trapping, preparation and detection of hyperfine qubits, single-qubit operations and multi-qubit entanglement protocols. Recent experimental advances and future research directions are outlined. PACS: 03.67.Lx, 32.80.Pj, 32.80.Qk, 42.50.Vk  相似文献   

20.
In a previous publication (Phys Rev Lett 108: 120501, 2012), Romero et al. proposed an ultrastrong coupling circuit QED system that can implement a two-qubit quantum phase gate with four controlling pulses. Based on this architecture, we demonstrate that an ultrafast two-qubit phase gate can also be realized with only one oscillation and lower coupling strengths. In our operation scheme, two identical qubits evolve synchronously under a single pulse with a duration determined by a specific coupling strength. The phase gate can also be obtained periodically. The influences of parameter fluctuations are estimated. We demonstrate that the fidelities can be greater than 99% if the parameter fluctuations are controlled within 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号