首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Steady-state rates of heat loss, from an array of 3 mm thick, 250 mm long, horizontal rectangular duralumin fins extending 60 mm perpendicularly out of a 250 mm × 190 mm vertical rectangular duralumin base, have been measured. With the base, at a uniform temperature of between 40°C and 80°C, in a 20°C ambient environment, two separations of the parallel fins, corresponding to maxima in the rate of heat loss versus fin separation curves ensued, respectively at 12 ± 1 mm and 38 ± 1 mm. The use of the latter maxima (i.e. the optimal separation) leads to the higher rate of heat loss. The heat transfer performances of vertical and horizontal rectangular fin arrays on a vertical rectangular base are compared: using the same geometrical configuration and identical base temperatures in both cases, the vertical fin orientation has the more rapid, steady-state heat loss.  相似文献   

2.
An experimental investigation of the steady-state rates of heat transfer from an array of vertical rectangular fins of 3 mm thickness and 250 mm length, protruding 60 mm perpendicularly upwards from a 250 mm × 190 mm horizontal rectangular base, is reported. For constant (to ±0·1°C) base temperatures between 40°C and 80°C, in an ambient environment of 20±0·2°C, the optimal separation of the parallel fins, corresponding to the maximum rate of heat loss, is 10·5±1·0 mm.The effects of the extent of the fin protrusions on the thermal performances of such vertical fins, on the same base, which was arranged to be either vertical or horizontal, have been studied. The experiments were performed with three different fin protrusions, namely 32 mm, 60 mm and 90 mm, for a base temperature of 40°C above that of the ambient environment. The steady-state rate of heat dissipation from the fin array increased slightly less than linearly with the fin protrusion for both orientations, but the relationship became closer to linear as the fin spacing was increased.A comparison of the abilities to dissipate heat to the room air from the same geometrical configuration having a rectangular fin array but positioned with vertical fins on a vertical base, vertical fins protruding upwards from a horizontal base, or horizontal fins on a vertical base, has been made. The orientation with vertical fins protruding upwards from the horizontal base, is the preferred option because of the relatively high rates of heat transfer that can then be achieved.  相似文献   

3.
The effects of increasing the fin length from 250 to 375 mm on (i) the steady-state rate of heat loss and (ii) the optimal uniform fin separation of vertical rectangular fins protruding from a horizontal or a vertical rectangular base, have been investigated experimentally. A constant base temperature, 40 (±0·3)°C above that of the ambient environment, was used.  相似文献   

4.
The steady-state natural convective cooling of horizontally-based, vertical rectangular fins, when in close proximity to an adiabatic horizontal shroud, situated adjacent to and above the horizontal fin-tips, was investigated experimentally. The resuls are of significance for the designers of electronic arrays, the components of which should be maintained at temperatures less than 65°C in order to ensure operational reliability. The optimal fin separation, which corresponds with the maximum rate of heat loss from the fin-array, has been deduced for various combinations of fin protrusions and distances of the shroud above the vertical fins, when the fins' base was maintained at a uniform temperature of 40 ± 0·5°C above that of the environment (21·0 ± 0·5°C). For a constant temperature-difference between the fin-base and the environment, lower optimal fin separations and higher steady-state heat-dissipation rates ensued when the shroud clearance to the fin height ratio was increased from zero to unity. Increasing the fin protrusion above the horizontal base also resulted in higher heat-dissipation rates from the fin-array. However, the fin-array with maximum shroud clearance is a much more favourable configuration (e.g. with respect to requiring less material) for achieving heat-transfer enhancement, than the fin array which employs large fin protrusions. For an open-ended duct of approximately the dimensions considered in this project (i.e. of maximum rectangular section 240 mm × 180 mm), the fins should protrude to less than half the internal height of the duct in order that a high convective performance of the fins is achieved. There is an optimal value of the shroud clearance to fin height ratio which exceeds unity for each specific operation, i.e. the exact optimal ratio being dependent upon the geometry and temperatures involved.

Average Nusselt numbers, evaluated from the experimental data, are correlated non-dimensionally with respect to the fin-array geometry and the Grashof number. This correlation indicates that variations of the shroud clearance to fin height ratio produce only marginal variations in the average Nusselt number.  相似文献   


5.
The almost two-dimensional steady-state rates of heat loss from arrays of uniformly-spaced vertical rectangular fins, extending upwards—in otherwise stagnant air—from horizontal heated bases, have been measured. (The vertical air gaps between the fins were closed at their sides, by insulated vertical end-barriers.) The effects of various combinations of height, thickness and spacing of the fins, for different base temperatures (in the range 40 to 100°C), have been studied.For the configuration considered, in a normal ambient environment (~ 20°C), there is an optimal fin spacing (? 16 mm) corresponding to the greatest steady-state rate of free convective/conductive heat loss through the air from the finned system, and this is almost independent of the temperature of the heat exchanger base (in the range 40–100°C). At this optimal spacing for base temperatures not greater than 50°C, the convective/conductive heat transfer rate from the array increases with the fin height up to about 60 mm, so that it would be uneconomic to employ taller fins if convection/conduction is dominant compared with radiation.If the radiation contribution is also considered, then the optimal spacing corresponding to the maximum total steady-state rate of heat loss through the air is somewhat less than the optimal spacing for which, under the same temperature conditions, the maximum steady-state rate of convective/conductive heat leak occurs. The greater the emissivity of the heat exchanger surfaces, the narrower the optimal uniform gaps between the fins.A two-dimensional finite-difference computer program has been composed to predict the temperature distribution throughout the heat exchanger for a stipulated ambient environmental temperature and experimentally-determined distribution of the heat transfer coefficient over the surfaces of the exchanger. This enables, for instance, any hot spots to be located prior to a proposed design being built.  相似文献   

6.
An experimental investigation of the steady-state rates of heat transfer from an array of vertical rectangular 3 mm thick fins, extending 60 mm perpendicularly out of a 250 mm high vertical rectangular base, is reported. For base temperatures between room temperature (~ 15°C) and 100°C, the optimal separation of the parallel fins, corresponding to the maximum rate of heat loss, is 10 ± 1 mm.  相似文献   

7.
《Applied Energy》1987,26(2):137-158
An experimental investigation of the steady-state rates of heat loss from an array of vertical rectangular fins of 3 mm thickness and 250 mm length, when in the presence of an almost adiabatic horizontal shroud, situated adjacent to and above the horizontal fin tips, is reported. With the fin's horizontal base at a uniform temperature of 40 ± 0·1° C above that of the ambient environment, the optimal fin separation—corresponding to the maximum rate of heat loss—is deduced. As the ratio of the shroud height above the vertical fins to the fin height decreases from unity to zero, this optimal value decreases by approximately 17%.The frictional characteristics of the air flow through the fin array have also been studied in the Reynolds number range of 4·0 × 104 to 2·0 × 105. Large streamwise pressure drops and high heat-transfer rates resulted when the fins were closely spaced and no clearance gap was present above the vertical fins. In reasing the shroud clearance resulted in smaller overall pressure drops and decreasing heat-transfer rates from the heat exchanger.  相似文献   

8.
《Applied Energy》1986,22(3):225-239
Steady-state free and forced convective cooling of vertical, rectangular, 3 mm thick, 250 mm long fins, uniformly separated and protruding vertically upwards from a 250 mm × 190 mm isothermal horizontal base was investigated.For each combination of specified fin protrusion, horizontal forced air flow-rate in the direction along the fins and fin base temperature, the optimal fin spacing—corresponding to the maximum rate of heat loss—has been deduced. As the fin protrusion of the heat exchanger increases, this optimal value rises significantly in forced convection conditions, but declines slightly in the presence of free convection alone.The temperature distributions over the fins' surfaces were also studied, when the fin base was maintained at constant temperatures of either 40°C, 60°C or 80°C above that of the ambient environment. Large temperature depressions occurred near the leading edges and tips of the fins in forced convection, whereas much nearer isothermal temperature distributions were present under free convection conditions.  相似文献   

9.
Numerical investigation of a PCM-based heat sink with internal fins   总被引:2,自引:0,他引:2  
The present study explores numerically the process of melting of a phase-change material (PCM) in a heat storage unit with internal fins open to air at its top. Heat is transferred to the unit through its horizontal base, to which vertical fins made of aluminum are attached. The phase-change material is stored between the fins. Its properties used in the simulations, including the melting temperature of 23-25 °C, latent and sensible specific heat, thermal conductivity and density in solid and liquid states, are based on a commercially available paraffin wax.A detailed parametric investigation is performed for melting in a relatively small system, 5-10 mm high, where the fin thickness varies from 0.15 mm to 1.2 mm, and the thickness of the PCM layers between the fins varies from 0.5 mm to 4 mm. The ratio of the PCM layer to fin thickness is held constant. The temperature of the base varies from 6 °C to 24 °C above the mean melting temperature of the PCM.Transient three- and two-dimensional simulations are performed using the Fluent 6.0 software, yielding temperature evolution in the fins and the PCM. The computational results show how the transient phase-change process, expressed in terms of the volume melt fraction of the PCM, depends on the thermal and geometrical parameters of the system, which relate to the temperature difference between the base and the mean melting temperature, and to the thickness and height of the fins.In search for generalization, dimensional analysis of the results is performed and presented as the Nusselt numbers and melt fractions vs. the Fourier and Stefan numbers and fin parameters. In some cases, the effect of Rayleigh number is significant and demonstrated.  相似文献   

10.
《Applied Energy》2001,69(1):29-38
Experimental data for heat dissipation from five duralumin vertical rectangular fin-arrays with the base horizontally oriented were measured. These measurements were to extend data obtained earlier from aluminum fin-arrays using the same experimental system and method. Data collated from earlier and present work covered the range of inter-fin separation distances from 6.25 to 7.95 mm. The range of the fin base excess temperature above the ambient air temperature, however, was quite extensive, from 19.0±0.1°C to 125.0±0.1°C. The fin length range was from 127 to 254 mm, the height from 6.35 to 38.10 mm, the thickness from 1.02 to 3.10 mm and the number of fins per array from 10 to 33. Relevant non-dimensional parameters formulated by earlier similarity analyses were used to generalize the data. Two types of correlations, one which used the inter-fin separation distance as the prime geometric parameter, and the other, which used half of the fin length, were presented and deviations discussed.  相似文献   

11.
The flow patterns and pool boiling heat transfer performance of copper rectangular fin array surfaces immersed in saturated FC-72 were experimentally investigated. The effects of the geometry parameters (fin spacing and fin length) on boiling performance were also examined. The test surfaces were manufactured on a copper block with a base area of 10 mm × 10 mm with three fin spacing (0.5 mm, 1.0 mm and 2.0 mm) and four fin lengths (0.5 mm, 1.0 mm, 2.0 mm and 4.0 mm). All experiments were performed in the saturated state at 1 atmospheric condition. A plain surface was used as the reference standard and compared with the finned surfaces. The photographic images showed different boiling flow patterns among the test surfaces at various heat fluxes. The test results indicated that closer and higher fins yielded a greater flow resistance that against the bubble/vapor lift-off in the adjacent fins. Moreover, as the heat flux approached to critical heat flux (CHF), numerous vapor mushrooms periodically appeared and extruded from the perimeter of the fin array, causing dry-out in the center of the fin array. Closer and higher fins provide more heat transfer. The results also showed that overall heat transfer coefficient decayed rapidly as the fin spacing decreased or the fin length increased. The maximum value of CHF on the base area was 9.8 × 105 W m−2 for the test surface with a 0.5 mm fin spacing and a 4.0 mm fin length, which has a value five times greater than that of the plain surface.  相似文献   

12.
A numerical study fully validated with solid experimental results is presented and analysed, regarding the hydrogenation process of rectangular metal hydride tanks for green building applications. Based on a previous study conducted by the authors, where the effective heat management of rectangular tanks by using plain embedded cooling tubes was analysed, in the current work the importance of using extended surfaces to enhance the thermal properties and the hydrogenation kinetics is analysed. The studied extended surfaces (fins) were of rectangular shape; and several combinations regarding the number of fins and the fin thickness were examined and analysed. The values for fin thickness were 2-3-5 and 8 mm and the number of fins studied were 10-14-18 and 20. To evaluate the effect of the heat management process, a modified version of a variable named as Non-Dimensional Conductance (NDC) is introduced and studied. A novel AB2-Laves phase intermetallic was considered as the metal hydride for the study. The results of the hydrogenation behaviour for the introduced parameters (fin number and thickness) showed that the rectangular tank equipped with the cooling tubes in combination with 14 fins of 5 mm fin thickness has the capability of storing hydrogen over 90% of its theoretical capacity in less than 30 min.  相似文献   

13.
This paper describes the use of our previous study's prediction procedures for calculating thermal resistance and pressure drop. The procedures are used in the optimization of heat sink geometries for impingement air-cooling of LSI packages. Two types of heat sinks are considered: ones with longitudinal fins and ones with pin fins. We optimized the heat sink geometries by evaluating 16 parameters simultaneously. The parameters included fin thickness, spacing, and height. For the longitudinal fins, the optimal fin thicknesses were found to be between 0.12 and 0.15 mm, depending on which of the four types of fans were used. For pin fins, the optimal pin diameters were between 0.39 and 0.40 mm. Under constant pumping power, the optimal thermal resistance of the longitudinal fins was about 60% that of the pin fins. For both types of heat sinks, the optimal thermal resistance for four off-the-shelf fans was only slightly (maximum about 1%) higher than the theoretical optimum for the same pumping power. When manufacturing cost performance is considered, the most economical fin thickness and diameter are about 5 to 10 times higher than the optimal values calculated without respect for manufacturing costs. These values almost correspond to the actual limits of extrusion and press heat-sink manufacturing processes. © 1999 Scripta Technica, Heat Trans Asian Res, 28(2): 138–151, 1999  相似文献   

14.
This study presents the effect of an inclination angle from the vertical position on the air-side thermal hydraulic performance for a multi-louvered fin and flat tube heat exchanger. For a heat exchanger with a louver angle of 27°, fin pitch of 1.4 mm and flow depth of 20 mm, a series of tests for dry and wet surface conditions were conducted for the air-side Reynolds numbers of 100–300. The inclination angles from the vertical position were 0°, ±30°, ±45°, and ±60° clockwise. The heat transfer performance for both dry and wet conditions was neither influenced significantly by the inclination angle (−60°<θ<60°), nor by the presence or absence of an upstream duct, while the pressure drops increased consistently with the inclination angle. The heat transfer coefficients and the pressure drops for the wet conditions revealed the importance of the role of condensate drainage.  相似文献   

15.
A quasi‐3D numerical model is developed to study the problem of laminar natural convection and radiation heat transfer from a vertical fin array. An enclosure is formed by two adjacent vertical fins and vertical base in the fin array. Results obtained from this enclosure are used to predict heat transfer rate from a vertical fin array. All the governing equations related to fluid in the enclosure, together with the heat conduction equation in both fins are solved by using the Alternating Direction Implicit (ADI) method for getting the temperatures along the height of the fin and the temperature of the fluid in the enclosure. Separate analysis is carried out to calculate the heat transfer rates from the end fins in the fin array. A numerical study has been carried out for the effect of fin height, fin spacing, fin array base temperature, and fin emissivity on total heat transfer rates and effectiveness of the fin array. The numerical results obtained for an eight‐fin array show good agreement with the available experimental data. Results show that the fin spacing is the most significant parameter and there exists an optimum value for the fin spacing for which the heat transfer rate from the fin array is maximum. Correlations are presented for predicting the total heat transfer rate, average Nusselt number, and effectiveness of the fin array. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20360  相似文献   

16.
《Applied Energy》2005,82(1):90-106
In this study, the effects of the longitudinal and lateral seperations of consecutively enlarged-contracted arranged fin pairs, widths of the fins, angle of attack, heights of fins and flow velocity on the heat and pressure drop characteristics were investigated using the Taguchi experimental-design method. Nusselt number and friction factor were considered as performance parameters. An L18(21137) orthogonal array was selected as an experimental plan for the eight parameters mentioned above. First of all, each goal was optimized, separately. Then, all the goals were optimized together, considering the priority of the goals, and the optimum results were found to be fin width of 15 mm, angle of attack of 15°, fin height of 100 mm, span-wise distance between fins of 20 mm, stream-wise distance between fins of 10 mm, span-wise distance between slices of 20 mm, stream-wise distances between slices of 20 mm at a flow velocity of 4 m/s.  相似文献   

17.
The problem of natural convection heat transfer from a horizontal fin array is theoretically formulated by treating the adjacent internal fins as two-fin enclosures. A conjugate analysis is carried out in which the mass, momentum and energy balance equations for the fluid in the two-fin enclosure are solved together with the heat conduction equations in both the fins. The numerical solutions by using alternating direction implicit (ADI) method yield steady state temperature and velocity fields in the fluid, and temperatures along the fins. Each end fin of the array is exposed to limited enclosure on one side and to infinite fluid medium on the other side. Hence a separate analysis is carried out for the problem of end fin exposed to infinite fluid medium with appropriate boundary conditions. From the numerical results, the heat fluxes from the fins and the base of the two-fin enclosure, and the heat flux from the end fin are calculated. Making use of the heat fluxes the total heat transfer rate and average heat transfer coefficient for a fin array are estimated. Heat transfer by radiation is also considered in the analysis. The results obtained for a four-fin array are compared with the experimental data available in literature, which show good agreement. Numerical results are obtained to study the effectiveness for different values of fin heights, emissivities, number of fins in a fixed base, fin base temperature and fin spacing. The numerical results are subjected to non-linear regression and equations are obtained for heat fluxes from the two-fin enclosure and single fin as functions of Rayleigh number, aspect ratio and fin emissivity. Also regression equations are obtained to readily calculate the average Nusselt number, heat transfer rate and effectiveness for a fin array.  相似文献   

18.
The steady-state thermal and air-flow resistance performances of horizontally-based pin-fin assemblies have been investigated experimentally. The effects of varying the geometrical configurations of the pin-fins and the air-flow rates have been studied. The optimal pin-fin separation Sxopt in the span-wise direction, to achieve a maximum rate of heat transfer from the assembly, is 1·0 ± 0·2 mm ≤ Sx ≤ 3·0 ± 0·2 mm for the pin-fins arranged either in the in-line or the staggered array. The optimal pin-fin separations in the stream-wise direction for these two arrays are 7·6 ± 0·2 mm and 7·8 ± 0·2 mm respectively. The general correlation of the data is:
  相似文献   

19.
《Applied Energy》2006,83(2):82-98
In the present study, the effects of the heights and widths of the hexagonal fins, streamwise and spanwise distances between fins, and flow velocity on the heat and pressure-drop characteristics were investigated using the Taguchi experimental-design method. Nusselt number and friction factor were considered as performance statistics. An L18(21137) orthogonal array was selected as the experimental plan for the five parameters mentioned above. While the optimum parameters were determined, the trade-off among goals was considered. First of all, each goal was optimized, separately. Then, all the goals were optimized together, considering the priority of the goals, and the optimum results were found to be a fin width of 14 mm, a fin height of 150 mm, spanwise distance between fins of 20 mm, and streamwise distance between fins of 20 mm for a flow velocity of 4 m/s.  相似文献   

20.
This paper reports on the impingement cooling characteristics of a heat sink with thin longitudinal fins of 0.2 mm thickness, which are spaced with a fin-pitch in the range 0.5 mm to 2.0 mm. The air cooling of the heat sink comes from a slot-shaped orifice positioned above the heat-sink center. The breadth of the gap between the fin tops and the inlet orifice is in the range 0 mm to 10 mm. The thermal resistance of the thin longitudinal fins used is about 50% to 57% that of the thick longitudinal fins now in commercial use. The cooling performance of the thin-plate fins is almost the same as that of optimally arranged pin-fins with the same total surface area. A maximum value of six times the heat transfer rate of a single flat plate having the same base area was observed for the thin-plate fins. A comparison of cooling performance between impingement and channel flow systems was conducted. The performance of impingement cooling systems is almost unaffected by the breadth of the gap between the fin tops and the inlet orifice (or, for channel cooling, the upper wall). On the other hand, the performance of channel-cooling systems decreases significantly as the gap widens. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res, 25(7): 449–459, 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号