首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porous glass-ceramics with a skeleton of the fast-lithium-conducting crystal Li1+ x Ti2− x Al x (PO4)3 (where x = 0.3–0.5) were prepared by crystallization of glasses in the Li2O─CaO─TiO2─Al2O3–P2O5 system and subsequent acid leaching of the resulting dense glass-ceramics composed of the interlocking of Li1+ x Ti2− x Al x (PO4)3 and β-Ca3(PO4)2 phases. The median pore diameter and surface area of the resulting porous Li1+ x Ti2− x Al x (PO4)3 glass-ceramics were approximately 0.2 μm and 50 m2/g, respectively. The electrical conductivity of the porous glass-ceramics after heating in LiNO3 aqueous solution was 8 × 10−5 S/cm at 300 K or 2 × 10−2 S/cm at 600 K.  相似文献   

2.
Submicrometer-sized, pure calcium hydroxyapatite (HA, (Ca10(PO4)6(OH)2)) and β-tricalcium phosphate (β-TCP, Ca3(PO4)2) bioceramic powders, that have been synthesized via chemical precipitation techniques, were used in the preparation of aqueous slurries that contained methyl cellulose to manufacture porous (70%–95% porosity) HA or β-TCP ceramics. The pore sizes in HA bioceramics of this study were 200–400 μm, whereas those of β-TCP bioceramics were 100–300 μm. The pore morphology and total porosity of the HA and β-TCP samples were investigated via scanning electron microscopy, water absorption, and computerized tomography.  相似文献   

3.
New CaO-P2P5 glass ceramics were prepared by crystallizing glass rods or plates unidirectionally in a temperature-gradient furnace. The unidirectionally crystallized glass showed extremely high bending strength (∼500 to 600 MN/m2) even when subjected to a severe abrasion treatment with Sic paper. Scanning electron microscopy of fracture surjaces revealed a typical fiber-reinforced-composite structure. Crystalline phases and crystallographic directions were checked by X-ray diflraction. The fracture mechanism is discussed in terms of microstructure.  相似文献   

4.
5.
Low-thermal-expansion ceramics having arbitrary thermal expansion coefficients were synthesized from homogeneous solid solutions in the system KZr2(PO4)3─KTi2(PO4)3 (KZP–KTP). Dense and strong ceramics were fabricated by sintering at 1100° to 1200°C with 2 wt% MgO. The thermal expansion coefficient increased from 0 to +3 × 10−6/°C with increasing x in KZr2 − xTix (PO4)3 (KZTP). In addition, a functionally gradient material with respect to thermal expansion was prepared by forming a series of KZTP solid solutions in a single ceramic body. By heating a pile of KZP and KTP ceramics in contact with each other, KZP and KTP bonded together to form a KZTP gradient solid solution near the interface.  相似文献   

6.
High-strength calcium metaphosphate fibers, which are expected to show good biocompatibility, are extracted from crystallized products of ultraphosphate glasses by aqueous leaching. Porous ceramics with skeletons of β-Ca(PO3)2 fibers for biomedical use are prepared by the sintering of the fibers. In the present work, porous ceramics having a large porosity of −70% were obtained. The compressive test of these porous ceramics showed that large strains of 0.2–0.3 are requisite for their fracture; the calcium phosphate porous ceramics in this work show much higher flexibility than conventional ceramics. The present work discusses the influence of the preparation conditions of the porous ceramics on their compressive strength behavior.  相似文献   

7.
Grain Size-Microcracking Relation for NaZr2(PO4)3 Family Ceramics   总被引:1,自引:0,他引:1  
The grain size-microcracking relation was examined for low thermal expansion NaZr2(PO4)3 family ceramics. By measurements of the strength, Young's modulus, thermal expansion, and grain size of polycrystalline ceramics sintered at appropriate conditions, the critical grain size for microcracking was determined. The critical grain size was proportional to the inverse square of the maximum thermal expansion difference.  相似文献   

8.
The thermal expansion of the skeletal framework was essentially zero for NaZr2(PO4)3-type compounds; the interstitialion, e.g., Na+, was primarily responsible for the total thermal expansion. The composition dependence of the thermal expansion is discussed in terms of the amounts, crystallographic sites, and ionic radii of the interstitial ions. The mechanism which results in low thermal expansion was clarified, particularly for KZr2(PO4)3, in which a larger ion is substituted for Na+, and NbZr(PO4)3, which does not contain Na+. Polycrystalline ceramics formed from these crystals might be useful as thermal-shock-resistant materials.  相似文献   

9.
Solid electrolytes, LiTi2(PO4)3 (LTP), Li1.3Al0.3Ti1.7(PO4)3 (LATP), and Li1.3Al0.3Ti1.7(PO4)2.9(VO4)0.1 (LATPV), were prepared by conventional sintering (CS) and spark plasma sintering (SPS) methods, and the Li+ ion conductivity of the sintered pellets was examined using an impedance analyzer. SPS remarkably improved the densification compared to CS and resulted in dense ceramics (95–97% of theoretical density) irrespective of the substituted ions. The highest conductivity of 2.6 × 10−4 S/cm was found for the LATPV specimen sintered by spark plasma at 1100°C. LATP and LATPV exhibited an order of magnitude higher ionic conductivity than LTP in the specimens of similar densities. The results demonstrated that the enhanced conductivity in substituted LTP is not due to the enhanced densification alone. The other possible explanations are discussed in terms of bottleneck size, lithium content, and grain boundary characteristics.  相似文献   

10.
Sodium-rich NASOCON-type ceramics, the NaM2(PO4)3+yNa2O (M = Ge, Ti, Hf, Zr) system, were investigated in order to obtain a material having a high Na+ conductivity and high density. The ionic conductivity and the sinterability were greately improved by an increase in the valve of y for all of the system examined. Added Na2O was not souble in teh NASICON-type skeletton, sice the lattice constants and teh X-ray diffraction patterns were not changed by the Na2O addintion in all of the samples. Na2O acts as a flux for obtaining highly dense ceramics and highly conductive grain boundaries. Partial A2 site insertion by Na+ ions is effective for the enhancement of conductivity, because the conductivity for Na1.5M(III)0.5Zr1.5(PO4)3 (M = In or Y) is about 1 order of magnitude higher than the maximum conductivity of the NaZr2(PO4)3+yNa2O system.  相似文献   

11.
Compositions along the Ca2SiO4–Ca3(PO4)2 join were hydrated at 90°C. Mixtures containing 15, 38, 50, 80, and 100 mol% Ca3(PO4)2 were fired at 1500°C, forming nagelschmidtite + a 1-CaSiO4, A -phase and silicocarnotite and a -Ca3(PO4)2, respectively. Hydration of these produces hydroxylapatite regardless of composition. Calcium silicate hydrate gel is produced when Ca2SiO4≠ 0 and portlandite when Ca2SiO4 is >50%. Relative hydration reactivities are a -Ca3(PO4)2 > nagelschmidtite > α 1-Ca2SiO4 > A -phase > silicocarnotite. Hydration in the presence of silica or lime influences the amount of portlandite produced. Hydration in NaOH solution produces 14-A tobermorite rather than calcium silicate hydrate gel.  相似文献   

12.
Novel calcium phosphate ceramics were fabricated by hot-pressing fibrous products extracted from crystallized products of calcium ultraphosphate glasses by aqueous leaching. The ceramics were dense materials with a relative density of >95%; these ceramics were composite materials that consisted of β-Ca(PO3)2 fibrous crystals with CaO–P2O5 glass, which was formed during hot pressing, as the matrix phase. These ceramics showed a high bending strength of 150–220 MPa and a low Young's modulus of 30–60 GPa. The high toughness contributed to the high strength, with fiber pull-out and crack deflection observed as the primary toughening mechanism.  相似文献   

13.
14.
Nanometer-sized Al2O3 particles were successfully synthesized as crystalline inclusions by mixing both components to form the nanometer-sized particles and the (Sc,Lu)2(WO4)3 matrices in a crystal lattice by preparing a solid solution of (Sc,Lu)2(WO4)3 and Al2(MoO4)3 and then decomposing the solid solution. The particles were dispersed uniformly and without agglomeration, which is commonly observed with conventional preparation techniques. The average particle size of the Al2O3 was 3.5 nm, and the standard deviation was estimated to be 1.1 nm.  相似文献   

15.
The preparation of Mg-stabilized β-tricalcium phosphate (β-TCP) was carried out by an aqueous precipitation method and the characterization of the powders was performed by powder X-ray diffraction, FT-IR spectra, Raman spectroscopy, and elemental analysis. The transformation of calcium-deficient apatite into β-TCP has occurred in the range of 700°–800°C. The calculated values for lattice parameters confirm the stabilization role played by Mg. The thermal stability of the Mg-stabilized β-TCP powders was evident until 1400°C, thus broadening the sintering temperature range without transformation into the undesirable α-TCP. Accordingly, the mechanical properties of the Mg-stabilized β-TCP were improved in comparison with those of pure β-TCP.  相似文献   

16.
A ceramic composite mimicking the pervasively cracked microstructure of flexible sandstone (itacolumite) was successfully synthesized by sintering two ceramic materials with different thermal expansion coefficients. A combination of granular KZr2(PO4)3 (high thermal expansion) and powdered KAlSi2O6 (low thermal expansion) resulted in a material with a jigsaw-like three-dimensional cracking microstructure similar to that of itacolumite. The synthesized composite was found to exhibit ductile deformation.  相似文献   

17.
The synthesis of perovskite Pb(Mg1/3Nb2/3)O3 from an equimolar mixture of Pb3Nb208 and MgO was studied by solid-state reaction techniques. An addition of 1 wt% excess MgO to the stoichiometric composition enhances the formation of the cubic perovskite phase. The absence of free PbO in the initial starting materials minimizes the volatilization loss during firing, thereby reducing the possibility of any compositional change and resulting in a substantial improvement of the perovskite phase purity over the conventional mixed-oxide processing.  相似文献   

18.
Complete solid solubility was found in the system Cog-(VO4)2−α-Zn3(VO4)2. Optical spectra of Co2+-containing α-Zn3(VO4)2 samples are discussed in the light of crystal field theory. The calculated and theoretical frequencies were in good agreement for octahedral symmetry in the zinc sites. The crystal field parameter Dq was consistent with the ionic approximation rule. The nephelauxetic ratio did not show any relation to cation-anion distance. Most probably the expanding d-d electron clouds of Co2+ interacted.  相似文献   

19.
Unit-cell parameters of the α-tricalcium phosphate [TCP; Ca3(PO4)2] were investigated using high-resolution synchrotron powder diffraction and the Rietveld method. The diffraction experiment was conducted at 29°C at the BL-15XU experimental station of SPring-8, Japan. Precise unit-cell parameters of the α-TCP were obtained; a =12.87271 (9), b =27.28034(8), c =15.21275(12) Å, α=γ=90°, and β=126.2078(4)°. The calculated density of α-TCP (2.8677 g/cm3) is smaller than that of β-TCP, indicating the "looser" structure of α-TCP.  相似文献   

20.
Dispersed aggregates of peculiar morphology have been obtained in phase-separated glasses of the system Ca3(PO4)2–SiO2–MgO, where the separated phase is amorphous silica. The formation of such convoluted aggregates is tentatively explained in terms of a fast coalescence process of initial isolated quasi-spherical droplets which behave as a dispersed phase in an emulsion-like system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号