首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic myelogenous leukemia (CML) is a malignant disease of the human hematopoietic stem cell caused by the BCR/ABL gene rearrangement. The only curative therapy is allogeneic transplantation. Although autologous transplants may prolong survival, most patients relapse because of disease persisting in the host and in the graft. Continued administration of chemotherapy after transplant could reduce the incidence of relapse provided that the autograft can be protected by transfer of a drug-resistance gene. However, CML autografts will almost certainly contain malignant stem cells that will also be rendered drug-resistant. The presence of the BCR/ABL oncoprotein is necessary and sufficient for malignant transformation seen in CML. We thus hypothesized that transfer of a vector that combines a drug-resistance gene with anti-BCR/ABL antisense (AS) sequences may allow for posttransplant chemotherapy to decrease persistent disease while rendering inadvertently transduced CML stem and progenitor cells functionally normal. We constructed a retroviral vector, LasBD, that combines the methotrexate (MTX)-resistant tyrosine-22 dihydrofolate-reductase (tyr22-DHFR) gene and AS sequences directed at the b3a2 BCR/ABL breakpoint. b3a2 BCR/ABL containing 32D and MO7e cells were transduced with LasBD and selected in MTX for 14 days. Expression of the AS sequences reduced BCR/ABL mRNA and p210(BCR/ABL) protein levels by 6- to 10-fold in most cells. This subsequently led to the restoration of normal function of BCR/ABL cDNA+ cells: they grew significantly slower in the presence of interleukin-3 (IL-3); they underwent apoptotic cell death when cultured without IL-3; and they had restored expression and function of adhesion receptors. These effects were specific, because LasBD-containing AS sequences directed at the b3a2 BCR/ABL breakpoint did not affect p190(BCR/ABL)-containing cells. LasBD also rendered 20% to 30% of primary Ph- and Ph+ CD34(+) cells MTX-resistant and decreased BCR/ABL mRNA levels in MTX resistant Ph+ CD34(+) cells by 10-fold. Expression of the MTX-resistant DHFR gene and the AS sequences has been stable for at least 1 year in vitro and for more than 70 days in vivo. Finally, LasBD decreased tumorigenicity of 32DBCR/ABL cells in vivo by 3 to 4 logs. In conclusion, the tyr22-DHFR gene in the LasBD vector can protect normal hematopoietic cells from MTX-mediated toxicity, whereas the AS sequences in LasBD can suppress expression of the BCR/ABL gene and restore normal function of BCR/ABL cDNA-containing cells. The LasBD vector may therefore prove to be an extremely useful adjunct in autologous transplantation for CML.  相似文献   

2.
Abnormal beta1 integrin receptor function may contribute to the continuous proliferation and abnormal circulation of malignant hematopoietic progenitors in chronic myelogenous leukemia (CML). Previous studies suggest that abnormal integrin function in CML progenitors is related to the presence of the BCR/ABL oncogene. BCR/ABL may alter integrin function in CML by phosphorylating cytoskeletal and/or signaling proteins important for normal integrin function. We evaluated the effect of Tyrphostin AG957, a protein tyrosine kinase (PTK) inhibitor which has activity against the p210BCR/ABL kinase, on beta1 integrin function in CML progenitors. Incubation of CML marrow CD34+HLA-DR+ cells with Tyrphostin AG957 at concentrations that did not affect colony-forming cells (CFC) viability, but which partly inhibited p210BCR/ABL kinase activity, significantly increased CML CFC adhesion to stroma and alpha4beta1 and alpha5beta1 integrin binding fragments of fibronectin (FN). CML CFC proliferation, unlike that of normal CFC, is not inhibited following integrin receptor engagement with FN or anti-integrin antibodies. AG957 did not alter CML CFC proliferation by itself, but resulted in significant inhibition of CML CFC proliferation following integrin engagement. Another PTK inhibitor, Tyrphostin AG555, which does not have anti-p210BCR/ABL kinase activity, did not affect CML CFC adhesion or proliferation. Neither AG957 nor AG555 affected normal CFC adhesion or proliferation. In BCR/ABL expressing cells, AG957 partially inhibited phosphorylation of several proteins that are BCR/ABL PTK substrates and are involved in normal integrin signaling. These studies suggest that abnormal tyrosine phosphorylation may play an important role in defective integrin function in CML progenitors.  相似文献   

3.
We examined the effect of norsegoline, a natural marine product, and dibezine, a synthetic product, on the survival of human myeloid progenitor cells [colony-forming unit-cells (CFU-C)] from normal individuals and from 10 patients with Philadelphia-positive chronic myelogenous leukemia (CML) in chronic phase and blastic crisis. We compared their effect to the effect of IFN-alpha. Norsegoline, dibezine, and IFN-alpha inhibited the proliferation of CFU-C in a dose-dependent manner. The number of CFU-C from bone marrow (BM) of five CML patients in chronic phase exposed for 16 h to norsegoline (10(-8)-10(-6)M), dibezine (10(-8)-10(-6)M), and IFN-alpha (500 units/ml) was found to be statistically lower (P < 0.05) than the number of CFU-C derived from normal individuals. A 16-h drug exposure of CD34(+) cells isolated from the peripheral blood of three CML patients in blastic crisis and from BM of two patients in chronic phase resulted in a marked inhibition in the ability of the cells to proliferate in liquid culture and a reduction in CFU-C content. Using the fluorescent in situ hybridization technique, we evaluated detection of the BCR/ABL fusion product in the CD34(+) cells. All five patients were 100% Philadelphia positive at diagnosis. BCR/ABL translocations were detected in 94.6 +/- 0.6% of cells following their growth in liquid culture for 7 days. Following exposure of CD34(+) cells to norsegoline, dibezine, or IFN-alpha, BCR/ABL fusion signals could be detected in 73 +/- 11%, 66.5 +/- 4. 7%, and 66.0 +/- 2.5% of cells from BM and 72.3 +/- 5%, 68.8 +/- 7%, and 60.6 +/- 6.8% of peripheral blood, respectively. Our data indicate that norsegoline and dibezine have in vitro an antileukemic effect against Philadelphia-positive cells and may be used in conjunction with currently available agents for ex vivo purging of BM and/or peripheral blood of CML patients in conjunction with autologous bone marrow transplantation.  相似文献   

4.
Interphase fluorescence in situ hybridization (FISH) for the translocation t(9;22) is widely used for quantifying minimal residual disease (MRD) in PBSC harvests from CML patients. We investigated the influence of cell composition on the percentage of positive FISH signals in 17 BCR/ABL-positive leukapheresis products from 12 CML patients. In these PBSC harvests, a significant correlation between the percentage of nonlymphocytic nucleated cells and BCR/ABL positivity was measured (k=0.81). This correlation was not seen in patients who became BCR/ABL negative after mini-ICE chemotherapy. CD34 enrichment was performed by immunomagnetic separation in 7 patients. There was a statistically significant increase in BCR/ABL positivity after CD34+ selection (p=0.018). This may have been caused by passive depletion of BCR/ABL-negative lymphocytes. Our findings suggest that quantitative results of t(9;22) FISH have to be corrected for cell composition when comparing different stem cell products. CD34+ selection before FISH analysis may be one way to enrich for nonlymphocytic cells and to concentrate on the progenitor compartment.  相似文献   

5.
6.
7.
Chronic myelogenous leukemia (CML) originates in a pluripotent hematopoietic stem cell of the bone marrow and is characterized by greatly increased numbers of granulocytes in the blood. Myeloid and other hematopoietic cell lineages are involved in the process of clonal proliferation and differentiation. After a period of 4-6 years the disease progresses to acute-stage leukemia. On the cellular level, CML is associated with a specific chromosome abnormality, the t(9; 22) reciprocal translocation that forms the Philadelphia (Ph) chromosome. The Ph chromosome is the result of a molecular rearrangement between the c-ABL proto-oncogene on chromosome 9 and the BCR (breakpoint cluster region) gene on chromosome 22. Most of ABL is linked with a truncated BCR. The BCR/ABL fusion gene codes for an 8-kb mRNA and a novel 210-kDa protein which has higher and aberrant tyrosine kinase activity than the normal c-ABL-coded counterpart. Phosphorylation of a number of substrates such as GAP, GRB-2, SHC, FES, CRKL, and paxillin is considered a decisive step in transformation. An etiological connection between BCR/ABL and leukemia is indicated by the observation that transgenic mice bearing a BCR/ABL DNA construct develop leukemia of B, T, and myeloid cell origin. CML cells proliferate and expand in an almost unlimited manner. Adhesion defects in bone marrow stromal cells have been proposed to explain the increased number of leukemic cells in the peripheral blood. However, findings of our laboratory have shown that the BCR/ABL chimeric protein that is expressed in transfected cells may, under certain conditions, also increase the adhesion to fibronectin via enhanced expression of integrin. Our previous immunocytological studies on the expression of beta1 and beta2 integrins have found no qualitative differences between normal and CML hematopoietic cells in vitro. Even long-term-cultured CML bone marrow or blood cells continuously express those adhesion molecules that are characteristic of the cytological type. Recent experiments indicate that certain early CML progenitors may adhere to the stromal layer in vitro similarly to their normal counterparts. They cannot be completely removed by long-term culture on allogeneic stromal cells. At present, the only curative therapy is transplantation of allogeneic hematopoietic stem cells. Based on the molecular and cellular state of knowledge of CML, new therapies are being developed. BCR/ABL antisense oligonucleotides, inhibitors of tyrosine kinase, peptide-specific adoptive immunotherapy or peptide vaccination, and restoration of hematopoiesis by autologous stem cell transplantation following CML cell purging are examples of important approaches to improving CML treatment.  相似文献   

8.
Chronic myelogenous leukemia (CML) is characterized by the continuous proliferation and abnormal circulation of malignant hematopoietic progenitors. This may be related to the unresponsiveness of CML progenitors to beta1 integrin adhesion receptor-mediated inhibition of progenitor proliferation by the marrow microenvironment. In hematopoietic cell lines, the BCR-ABL oncogene product, p210(BCR-ABL), interacts with a variety of cytoskeletal elements important for normal integrin signaling. We studied the role of p210(BCR-ABL) in abnormal integrin function in CML by evaluating the effect of inhibition of BCR-ABL expression with antisense oligodeoxynucleotides (AS-ODNs) on integrin-mediated adhesion and proliferation inhibition of malignant primary progenitors from CML marrow. Preincubation of CML CD34(+)HLA-DR+ (DR+) cells with breakpoint-specific AS-ODNs significantly increased adhesion of CML progenitors to stroma and fibronectin (FN). Pretreatment with breakpoint-specific ODNs also resulted in significant inhibition of CML progenitor proliferation after ligand or antibody-mediated beta1 integrin engagement. Breakpoint-specific ODNs were significantly more effective in restoring CML progenitor adhesion and proliferation inhibition than control ODNs. BCR-ABL mRNA and p210(BCR-ABL) levels in CML CD34(+) cells were significantly reduced after incubation with breakpoint-specific AS-ODN. These studies indicate a role for BCR-ABL in abnormal circulation and defective integrin-dependent microenvironmental regulation of proliferation of CML hematopoietic progenitors.  相似文献   

9.
Interferon-alpha (IFN-alpha) is an established treatment for chronic myelogenous leukemia (CML) in chronic phase, but the mechanism of its antileukemic activity is not clear. One possible mechanism of action might include the induction of apoptosis, and especially Fas-mediated cell killing may play an important role in the elimination of malignant cells. We investigated Fas receptor (Fas-R) expression and the consequences of Fas-R triggering in CML patients. Using two-color flow cytometry, we found a significantly higher number of Fas-R-expressing CD34+ cells in the bone marrow (BM) of CML patients compared with normal subjects. We have previously shown that IFN-gamma induces Fas-R expression on CD34+ cells; in this study, we investigated whether IFN-alpha induces Fas-R expression on CML progenitor cells. Dose-dependent induction of Fas-R expression was observed after IFN-alpha stimulation of CD34+ cells from CML BM. In methylcellulose culture, IFN-alpha alone at a therapeutic concentration showed only marginal antiproliferative effects on both normal and CML BM progenitors. In contrast, a Fas-R agonist, the anti-CD95 monoclonal antibody CH11, inhibited colony formation from normal progenitors, and the inhibition was even stronger on CML progenitors. When CML BM cells were cultured in the presence of IFN-alpha, Fas-R-mediated inhibition of colony growth was potentiated in a dose-dependent fashion, consistent with IFN-alpha induction of Fas-R expression. This functional effect did not require the presence of accessory cells, since similar results were obtained with purified CD34+ cells. In suspension cultures, we demonstrated that suppression of CML hematopoiesis by IFN-alpha and Fas-R agonist was exerted through Fas-R-mediated induction of apoptosis. Our findings suggest that the Fas-R/Fas-ligand system might be involved in the immunologic regulation of CML progenitor growth and that its effect can be amplified by IFN-alpha.  相似文献   

10.
Manipulation of autologous bone marrow cells (BM) for transplantation in chronic myeloid leukemia (CML) to enrich for normal cells is a novel approach that may improve survival for patients not suitable for allogeneic transplantation. Limitations of this technique include the reported low frequency of normal stem cells in CML and the difficulties in obtaining sufficient BM for manipulation. To address these problems we compared the apheresis product with the diagnostic bone marrow at diagnosis as a source of primitive BCR/ABL-negative progenitors. We analyzed the CD34+ HLA-DR- and CD34+CD38(-) populations in five CML patients to evaluate the frequency of BCR-ABL-negative progenitors and pre-progenitors in these populations. Progenitor analysis was performed by RT-PCR of individual hemopoietic colonies from a standard CFU-GM assay. Analysis of pre-progenitors involved RT-PCR of secondary colonies derived from a stroma-free pre-CFU assay. Our results show variable levels of BCR-ABL-negative progenitors in the 34+DR- population but very low levels of BCR-ABL-negative progenitors in the 34+38- population in blood. Analysis of pre-progenitors from the 34+DR- fraction of peripheral blood (PB) and BM showed 80-100% and 85-100% of colonies were BCR-ABL negative at days 14 and 28, respectively. Analysis of pre-progenitors from the 34+38- fraction of PB and BM showed 23-100% and 42-100% of colonies were BCR-ABL negative at days 14 and 28, respectively. In summary, pre-progenitors from the 34+DR- and 34+38- populations are predominantly BCR-ABL negative in both marrow and blood at diagnosis. Apheresis product collected at diagnosis is a more abundant sources of BCR-ABL-negative pre-progenitors than BM. Thus, apheresis product could potentially be utilized as a source of BCR-ABL-negative stem cells in CML.  相似文献   

11.
In order to analyze the efficiency of interphase FISH for the detection and monitoring of Ph+ cells in chronic myelogenous leukemia (CML) under interferon (IFN) treatment, the following experiments were performed: (1) 98 specimens derived from 32 patients were analyzed in parallel by dual-color FISH and by conventional chromosome analysis (CCA). A 300/200 kb BCR/ABL probe was used in all tests and a smaller 35.5/39 kb probe was tested in parallel in 22 BM samples; (2) 30 BM samples were prepared by direct harvest and by 24-h culture and were analyzed in parallel; (3) PB and BM samples obtained simultaneously from 11 patients were analyzed. The cut-off point for the recognition of BCR/ABL fusion was set at 2.4%, calculated as the mean percent of false positivity in 11 controls plus 3 s.d. A very close correlation was observed (r=0.994, r2=0.988, P < 0.0001) between the percentages of Ph+ cells as assessed by CCA and by interphase FISH in 98 samples (26 at diagnosis). There was a moderate overestimation of the frequency of Ph+ cells by FISH with respect to CCA, that was more evident at low-to-medium values of Ph positivity. Seven specimens without Ph+ metaphases (17-50 cells analyzed) were shown to carry 2.5-8% interphase cells with BCR/ABL fusion. Similar percentages of BCR/ABL+ nuclei were recorded in 22 samples hybridized using the 300/200 kb and the 35.5/39 kb probe-sets (variation range: 0-5%, mean 2.3%). A very good correlation between the frequency of Ph+ interphase cells was observed when analyzing in parallel BM preparations after direct harvest and after 24-h culture. Underestimation of the percentage of BCR/ABL+ cells was noted to occur in 2/11 PB samples, compared to BM samples, the remaining nine cases showing superimposable results at either sites. We arrived at the following conclusions: (1) dual-color FISH enables an accurate detection and monitoring of the size of the Ph-positive clone in CML at diagnosis and after IFN-therapy; (2) FISH is more accurate than CCA, especially at low levels of Ph-positive cells; (3) testing of directly harvested BM samples is feasible and accurate, giving the opportunity to perform centralized FISH analysis in the context of multicentre trials; (4) the percentage of BCR/ABL+ PB cells usually, though not invariably, reflects the frequency of mutated cells in the BM.  相似文献   

12.
13.
14.
Chronic myelogenous leukemia (CML) is a myelo-proliferative disorder which, after a chronic phase which lasts an average of 3 years, evolves into an acute disease which is resistant to chemotherapy. Nevertheless, a few studies have reported cases in which partial or complete hematologic, cytogenetic and/or molecular remission of the disease were observed either spontaneously or after non intensive chemotherapy, with or without medullar aplasia. Some of these patients later relapsed into a blast crisis. We report a case of CML with clinical and hematologic remission for 19 years after two cycles of busulphan not causing medullar aplasia, negative for the BCR/ABL gene by Southern blot but with the gene's mRNA detectable by hot start nested RT-PCR.  相似文献   

15.
Adoptive immunotherapy with donor lymphocyte infusions (DLI) is an effective treatment for relapsed chronic myeloid leukemia (CML) after allogeneic stem cell transplantation. To identify the effector and target cell populations responsible for the elimination of the leukemic cells in vivo we developed an assay to measure the frequency of T lymphocyte precursor cells capable of suppressing leukemic progenitor cells. Target cells in this assay were CML cells that were cultured in the presence of stem cell factor, interleukin 3, granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, and erythropoietin. [3H]thymidine incorporation at day 7 represented the proliferation of the progeny of the CD34(+) CML progenitor cells, and not of the more mature CD34(-) CML cells. Effector cells were mononuclear cells, which were used in a limiting dilution analysis to measure the frequencies of CML progenitor cell-inhibitory lymphocyte precursors (PCILp) in peripheral blood of seven patients before and after DLI for relapsed CML. In the six patients who entered complete remission, a 5- to 100-fold increase of PCILp was found during the clinical response. In the patient with resistant relapse the frequency of PCILp was <10 per ml before and after DLI. Leukemia-reactive helper T lymphocyte precursor frequencies remained unchanged after DLI. A significant increase in cytotoxic T lymphocyte precursor frequency against more mature leukemic cells was found in only two responding patients. These results indicate that T cells specifically directed against CD34(+) CML progenitor cells mediate the antileukemic effect of DLI.  相似文献   

16.
17.
Myelodysplastic syndrome (MDS) is believed to be a stem-cell disorder involving cytopenia and dysplastic changes in three hematopoietic lineages. However, the involvement of pluripotent stem cells and progenitor cells has not been clarified conclusively. To address this issue, we used fluorescence in situ hybridization (FISH) of blood and bone marrow (BM) smears for mature cells and FISH of cells sorted by fluorescence-activated cell sorting for progenitor cells. Seven patients with MDS associated with trisomy 8 were studied. FISH showed +8 in granulocytes, monocytes, and erythroblasts, but not in lymphocytes. Sorted cells of T (CD3(+)), B (CD19(+)), and NK cells (CD3(-)CD56(+)) from peripheral blood did not contain +8, nor did CD34(+) subpopulations from BM including B (CD34(+)CD19(+)), T/NK (CD34(+)CD7(+)) progenitors, and pluripotent stem cells (CD34(+)Thy1(+)). The +8 chromosome abnormality was identified in stem cells only at the level of colony-forming unit of granulocyte-erythrocyte-macrophage-megakaryocyte (CFU-GEMM; CD34(+)CD33(+)). It may thus be concluded that cells affected by trisomy 8 in the context of MDS are at the CFU-GEMM level and that cells of lymphoid lineage are not involved. These results provide new insights into the biology of MDS and suggest that intensive chemotherapy and autologous BM transplantation may become important therapeutic strategies.  相似文献   

18.
Normal hematopoietic progenitors and acute myelogenous leukemia cells show a differential requirement for the encoded product of c-myb proto-oncogene for proliferation. To determine whether c-myb is also differentially required for the proliferation of hematopoietic progenitors of chronic myelogenous leukemia (CML), mononuclear cells derived from both chronic phase and blast crisis were exposed to c-myb antisense oligodeoxynucleotides and assayed for colony-forming ability. Exposure of CML-BC cells from 12 patients to c-myb antisense oligodeoxynucleotides resulted in significant (p<001) inhibition of leukemia colony formation (average inhibition 63%) and was accompanied by down-regulation of c-myb expression. Colonies derived from CML chronic phase progenitors were virtually unaffected in 10 cases, but down-regulation of c-myb expression was not detected. However, in studies conducted with CD34+ leukemia cells, a subset highly enriched for hematopoietic progenitors, colony formation was inhibited at both disease stages, whereas CFU-GM colony formation derived from normal CD34+ cells was not affected by exposure to c-myb antisense oligodeoxynucleotides. These data suggest that CML chronic phase and blast crisis progenitors are both sensitive to the inhibitory effects of c-myb antisense oligomers, and that the lack of inhibition in partially purified CML-chronic phase progenitors is probably due to inefficient penetration of oligodeoxynucleotides into the clonogenic cells. The preferential effect of c-myb antisense oligodeoxynucleotides on colonies arising from the compartment that includes CML-CD34+ progenitors likely reflects the expansion of a cell population with high proliferative potential and elevated c-myb mRNA levels.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号